Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T03:39:29.606Z Has data issue: false hasContentIssue false

Synthesis of nanocrystalline aluminum–gallium nitride (AlxGa1−xN; x = 0.1 to 0.5) with oxide precursors via ammonolysis

Published online by Cambridge University Press:  03 March 2011

Sabine Faulhaber*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106 and Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstraße 23, 64287 Darmstadt, Germany
Lars Loeffler
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
Jerry Hu
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
Edwin Kroke
Affiliation:
Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstraße 23, 64287 Darmstadt, Germany
Ralf Riedel
Affiliation:
Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstraße 23, 64287 Darmstadt, Germany
Fred F. Lange
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106
*
a)Address all correspondence to this author. e-mail: safaha@engineering.ucsb.edu
Get access

Abstract

Oxygen-containing precursor systems for the synthesis of mixed aluminum–gallium nitride (AlxGa1−xN with x = 0.1 to 0.5) through ammonolysis (heat treatment under ammonia) were evaluated. Three different precursor systems were studied: (i) aluminum isopropoxide (aluminum sec-butoxide)/gallium isopropoxide hydrolyzed with excess water and cross-linked with 1,6-hexanediol, (ii) aluminum–gallium hydroxide coprecipitated from aluminum–gallium nitrate solution, and (iii) spray-dried aluminum–gallium nitrate solutions. The specimens were heat-treated between 700 °C and 1100 °C and were characterized mainly by x-ray diffraction, nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). NMR was used to follow the conversion of oxygen to nitrogen bonds. TEM in combination with energy-dispersive x-ray spectroscopy was used to determine the solid-solution composition for separated particles. It is possible to synthesize a mixed hexagonal (Al,Ga)N with crystallite sizes in the range of ∼10 nm from all three precursor systems, but all products contained larger GaN crystals ranging from 20 nm (alkoxide-derived) to 200 nm (hydroxide-derived) and a fraction of untransformed Al–O bonds; e.g., (amorphous or γ-phase) Al2O3.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S., Pearton, S., and Fasol, G., The Blue Laser Diode: The Complete Story, 2nd ed (Springer, New York, 2000).Google Scholar
2.Nakamura, S., in Handbook of Thin Film Devices, edited by Maurice Francombe, H. (Academic Press, San Diego, CA, 2000), Vol. 2, pp. 225-263.Google Scholar
3.Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
4.DenBaars, S.P. and Keller, S., Semiconduct. Semimet. 50, 11 (1998).Google Scholar
5.Lange, F.F., Science 5277, 903 (1996).Google Scholar
6.Puchinger, M., Wagner, T., Fini, P., Kisailus, D.J., Beck, U., Bill, J., Aldinger, F., Arzt, E., and F. Lange, F., J. Cryst. Growth 233, 57 (2001).Google Scholar
7.Janik, J.F., Wells, R.L., Coffer, J.L., John, J.V. St., Pennington, W.T., and Schimek, G.L., Chem. Mater. 10, 1613 (1998).Google Scholar
8.Benaissa, M., Gonsalves, K.E., and Rangarajan, S.P., Appl. Phys. Lett. 71, 3685 (1997).CrossRefGoogle Scholar
9.Balkas, C.M. and Davis, R.F., J. Am. Ceram. Soc. 79, 2309 (1996).Google Scholar
10.Kroke, E., Loeffler, L., Lange, F.F., and Riedel, R., J. Am. Ceram. Soc. 85, 3117 (2002).Google Scholar
11.Jacob, K.T., Verma, R., and Mallya, R.M., J. Mater. Sci. 37, 4465 (2002).Google Scholar
12.Hoch, M., and Nair, K.M., Am. Ceram. Soc. Bull. 58, 187 (1979).Google Scholar
13.Sappei, J., Goeuriot, D., Thevenot, F., L'haridon, P., Guyader, J., and Laurent, Y., Lab. Ceram. Spec. 17, 137 (1991).Google Scholar
14.Sjoeberg, J. and Pompe, R., J. Am. Ceram. Soc. 75, 2189 (1992).Google Scholar
15.Sekine, M., Katayama, S., and Mitomo, M., 134, 199 (1991).Google Scholar
16.Sakida, S., Hayakawa, S., and Yoko, T., J. Am. Ceram. Soc. 84, 836 (2001).Google Scholar
17.Balmer, M.L., Eckert, H., Das, N., and Lange, F.F., J. Am. Ceram. Soc. 79, 321 (1996).Google Scholar
18.Miyaji, F., Tadanaga, K., Yoko, T., and Sakka, S.. J. Non-Cryst. Solids 139, 268 (1992).Google Scholar
19.Massiot, D., Farnan, I., Gautier, N., Trumeau, D., Trokiner, A., and Coutures, J.P., Solid State Nucl. Magn. Reson. 4, 241 (1995).Google Scholar
20.Bradley, S.M., Howe, R.F., and Kydd, R.A., Magn. Reson. Chem. 31, 883 (1993).Google Scholar
21.Fitzgerald, J.J., Kohl, S.D., Piedra, G., Dec, G.E., and Maciel, S.F., Chem. Mater. 6, 1915 (1994).Google Scholar
22.Jung, W-S., Mater. Lett. 57, 110 (2002).Google Scholar
23.Puchinger, M., Kisailus, D.J., Lange, F.F., and Wagner, T., J. Mater. Res. 17, 353 (2002).CrossRefGoogle Scholar
24.Shin, H., Arkun, E., Thomson, D.B., Miraglia, P., Preble, E., Schlesser, R., Wolter, S., Sitar, Z., and Davis, R.F., J. Cryst. Growth, 236, 529 (2002).Google Scholar
25.Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-Cryst. Solids 100, 65 (1988).Google Scholar
26.Babonneau, F., Coury, L., and Livage, J., J. Non-Cryst. Solids 121, 153 (1990).Google Scholar