Article contents
Synthesis of SiC microtube with villus-like morphology and SiC fiber
Published online by Cambridge University Press: 03 March 2011
Abstract
Silicon carbide (SiC) microtubes were synthesized and characterized via a vapor–solid (VS) reaction of carbon fiber (Csolid) and SiO(gas). The synthesis mechanisms were investigated. The precursor led complete conversion of [SiO(gas) + C(solid)] into [SiC(solid) + CO(gas)] through overall reaction under inert gas flow at and above 1350 °C. Carbon fibers with small surface area (0.7–2.0 m2 g−1) were gradually converted to SiC microtubes with large specific surface area (45–63 m2 g−1). Inner surface of SiC microtubes indicated a villus-like morphology, which consisted of submicron-sized SiC villi. The outer surface of the SiC microtubes was smooth. Inner surface morphology of SiC microtubes was dependent upon synthesizing temperature. Thickness of villus-like layer in SiC microtubes increased with increasing synthesizing temperature, showing 0.25 and 0.5 at 1350 and 1400 °C, respectively. Both VS and gas–liquid–solid (VLS) growth mechanisms were investigated in synthesis of SiC fiber as a reaction byproduct, and the reaction was governed by both growth mechanisms.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 10
- Cited by