Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T19:36:50.471Z Has data issue: false hasContentIssue false

Synthesis of vapor-grown carbon fibers from camphor without catalyst and their characterization

Published online by Cambridge University Press:  31 January 2011

Debabrata Pradhan
Affiliation:
Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400 076, India
Maheshwar Sharon
Affiliation:
Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400 076, India
Indrajit Mukhopadhyay
Affiliation:
Department of Material Chemistry, Shinshu University, Ueda-386, Japan
Get access

Abstract

Vapor-grown carbon fibers and carbon micro-beads were produced in the absence of catalysts from a natural precursor, camphor, by a thermal chemical vapor deposition process, at different temperatures in an argon medium. Scanning and transmission electron microscopy, Raman spectra, and electrical conductivity studies were used to characterize these fibers. It was observed that cylindrical fibers (diameter ∼3 μm) were obtained at 1033 K and rippled fibers (diameter ∼5 μm) were formed at 1273 K while carbon beads (diameter ∼0.5–1 μm) were formed at 1173 K. It is proposed that agglomeration of carbon beads predominate at pyrolysis temperature greater than 1173 K, resulting into rippled type fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chung, D.D.L., in Nanostructured Carbon for Advanced Applications, edited by Benedek, G., Milani, P., and Ralchenko, V.G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001), pp. 331.Google Scholar
2.Masuda, T., Mukai, S.R., and Hashimoto, K., Carbon 31, 783 (1993).CrossRefGoogle Scholar
3.Daumit, G.P., Carbon 32, 577 (1989).Google Scholar
4.Hudnut, S.W. and Chung, D.D.L., Carbon 33, 1627 (1995).CrossRefGoogle Scholar
5.Baker, R.T.K., Baber, M.A., Harris, P.S., Feates, F.S., and Waite, R.J., J. Catalysis 26, 51 (1972).Google Scholar
6.Benissad, F., Gadelle, P., Coulon, M., and Bonnetain, L., Carbon 26, 61 (1988).CrossRefGoogle Scholar
7.Zaghib, K., Tatsumi, K., Abe, H., Ohsaki, T., and Sawada, Y., J. Electrochem. Soc. 145, 210 (1998).CrossRefGoogle Scholar
8.Abe, H., Murai, T., and Zaghib, K., J. Power Sources 77, 110 (1999).Google Scholar
9.Jana, P.B. and Mallik, A.K., J. Elastomers Plastics 26, 58 (1994).Google Scholar
10.Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Pirio, G., Legagneux, P., Wyczisk, F., Pribat, D., and Hasko, D.G., Appl. Phys. Lett. 80, 2011 (2002).CrossRefGoogle Scholar
11.Lee, C.J., Lee, T.J., and Park, J., Chem. Phys. Lett. 340, 413 (2001).CrossRefGoogle Scholar
12.Mukhopadhyay, K., Krishna, K.M., and Sharon, M., Phys. Rev. Lett. 72, 3182 (1994).CrossRefGoogle Scholar
13.Sharon, M., Mukhopadhyay, K., Yase, K., Iijima, S., Ando, Y., and Zhao, X., Carbon 36, 507 (1998).Google Scholar
14.Sharon, M., Hsu, W.K., Kroto, H.W., Walton, D.R.M., Kawahara, A., Ishihara, T., and Takita, Y., J. Power Sources 104, 148 (2002).CrossRefGoogle Scholar
15. Ph. Serp, Madronero, A., and Figueiredo, J.L., Fuel 78, 837 (1999).Google Scholar
16.Vanhattum, F.W.J., Serp, Ph., Figueiredo, J.L., and Bernardo, C.A., Carbon 35, 860 (1997).Google Scholar
17.Sharon, M., Sundarakoteeswaran, N., Kichambre, P.D., Kumar, M., Ando, Y., and Zhao, X., Diamond Relat. Mater. 8, 485 (1999)CrossRefGoogle Scholar
18.Baker, R.T.K., in Carbon Fibers Filaments and Composites, edited by Figueiredo, J.L., Bernardo, C.A., Baker, R.T.K., and Huttinger, K.J. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990), p. 405.Google Scholar
19.Ferrari, A.C. and Robertson, J., in Nanostructured Carbon for Advanced Applications, edited by Benedek, G., Milani, P., and Ralchenko, V.G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001), pp. 177.Google Scholar
20.Nemanich, R., Glass, J., Lucovsky, G., and Shroder, R., J. Vac. Sci. Technol. A 6, 1783 (1988).CrossRefGoogle Scholar
21.Nemanich, R. and Solin, S., Phys. Rev. B 20, 392 (1979).Google Scholar
22.Piraux, L., Nysten, B., Haquenne, A., Issi, J.P., Dresselhaus, M.S., and Endo, M., Solid State Commun. 50, 697 (1984).CrossRefGoogle Scholar
23.Madronero, A., Hendry, A., and Froyen, L., Comp. Sci. Technol. 59, 1613 (1999). FIG. 10. Plot of reciprocal of temperature versus natural logarithm of conductance for carbon fibers obtained at different pyrolysis temperatures. Pradhan, D. et al.: Synthesis of vapor-grown carbon fibers from camphor without catalyst and their characterization 2038 J.Google Scholar