Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T21:41:12.709Z Has data issue: false hasContentIssue false

Synthesis of YBa2Cu3O7−x fibers from an organic acid solution

Published online by Cambridge University Press:  31 January 2011

S. C. Zhang
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
G. L. Messing
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
W. Huebner
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
M. M. Coleman
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

A process has been developed for the synthesis of YBa2Cu3O7−x superconducting fibers from an organic acid precursor solution. Through rheology measurements on a series of precursor solutions, the molecular structure was determined and subsequently controlled to allow for fiber drawing. For solutions with a viscosity ⋛10 poise, fibers of 1 to 2 m length and 50 ∼ 100 μm diameter can be hand drawn at ≍80 °C. Processing methods were developed to circumvent deformation of the thermoplastic fibers during heating and to minimize BaCO3 formation during decomposition. Fibers sintered at 850 °C for 1 h in 10−2 atm O2, followed by annealing at 500 °C for 4 h in O2, were fully dense, consisted of submicron grains, and were superconducting.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J. G. and Müller, K. A., Z. Phys. B64, 189193 (1986).CrossRefGoogle Scholar
2Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Q., and Chu, C. W., Phys. Rev. Lett. 59, 908 (1987).CrossRefGoogle Scholar
3Yamada, Y., Fukushima, N., and Nakayama, S., Jpn. J. Appl. Phys. 26 (5), L865–L866 (1987).CrossRefGoogle Scholar
4Jin, S., Sherwood, R. C., Van Dover, R. B., Tiefel, T. H., and Johnson, D. W., Appl. Phys. Lett. 51 (3), 203204 (1987).CrossRefGoogle Scholar
5Sadakata, N., Ikeno, Y., Nakagawa, M., Gotoh, K., and Kohno, O., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H. L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 293.Google Scholar
6Goto, T. and Kada, M., Jpn. J. Appl. Phys. 26, Supplement 2631 (1987).Google Scholar
7Goto, T. and Horiba, I., Jpn. J. Appl. Phys. 26 (12), L1970–L1972 (1987).CrossRefGoogle Scholar
8Jin, S., Tiefel, T. H., Sherwood, R. C., Kammlott, G. W., and Zahurak, S. M., Appl. Phys. Lett. 51 (12), 943945 (1987).CrossRefGoogle Scholar
9Umeda, T., Kozuka, H., and Sakka, S., Adv. Ceram. Mater. 3 (5), 520522 (1988).CrossRefGoogle Scholar
10Sbaizero, O. and Maschio, S., Mater. Chem. and Phys. 21, 8591 (1989).CrossRefGoogle Scholar
11Uchikawa, F., Zheng, H., Chen, K. C., and Mackenzie, J. D., Extended Abstracts No. 14, High Temperature Superconductors II, edited by Capone, D. W., II, Butler, W. H., Batlogg, B., and Chu, C. W. (Materials Research Society, Pittsburgh, PA, 1988).Google Scholar
12Zheng, H., Chen, K. C., and Mackenzie, J. D., Extended Abstracts No. 14, High Temperature Superconductors II, edited by Capone, D. W., II, Butler, W. H., Batlogg, B., and Chu, C. W. (Materials Research Society, Pittsburgh, PA, 1988).Google Scholar
13Sakka, S. and Kozuka, H., J. Non-Cryst. Solids 100, 142153 (1988).CrossRefGoogle Scholar
14Pechini, M. P., U.S. Patent No. 3 330697 (1967).Google Scholar
15Eror, N. G. and Anderson, H. U., Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 73, p. 571.Google Scholar
16Anderson, H. U., Pennell, M. J., and Guha, J. P., Ceramic Powder Science, edited by Messing, G. L., Mazdiyasni, K. S., McCauley, J. W., and Haber, R. (Am. Ceram. Soc, Westerville, OH, 1987), p. 91.Google Scholar
17Lessing, P. A., Am. Ceram. Soc. Bull. 168 (5), 10021007 (1989).Google Scholar
18Budd, K. D. and Payne, D. A., Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Elsevier, New York, 1984), p. 239.Google Scholar
19Brozoski, B. A., Coleman, M. M., and Painter, P. C., Macromolecules 17 (2), 230234 (1984).CrossRefGoogle Scholar
20Ionic Polymers, edited by Holliday, L. (J. Wiley, New York, 1975).Google Scholar
21Coleman, M. M., Lee, J. Y., and Painter, P. C., accepted in Macromolecules (1990).Google Scholar
22Saunders, K. J., Organic Polymer Chemistry (Chapman-Hall, London, 1973), Chap. 10.CrossRefGoogle Scholar
23Thomson, W. J., Wang, H., Parkman, D. B., Li, D. X., Strasik, M., Luhman, T. S., Han, C., and Aksay, I. A., J. Am. Ceram. Soc. 72 (10), 19771979 (1989).CrossRefGoogle Scholar
24Chen, A. and Li, B. R., presented at the 91st Annual Meeting of the Am. Ceram. Soc, Indianapolis, IN (1989).Google Scholar
25Stark, J. D., Magrufer, R. H., III, and Kinser, D. L., presented at the 91st Annual Meeting of the Am. Ceram. Soc, Indianapolis, IN (1989).Google Scholar
26Rha, J. J., Yoon, K. J., Kang, S. L., and Yoon, D. N., J. Am. Ceram. Soc. 71 (7), C-328–C-329 (1988).CrossRefGoogle Scholar
27Poeppel, R. B., Balachandran, U., Emerson, J. E., Johnson, S. A., Lanagan, M. T., and Youngdahl, C. A., presented at the American Ceramic Society's First International Ceramic Science and Technology Conference, Anaheim, CA (1989).Google Scholar
28Ruckenstein, E., Narain, S., and Wu, N. L., J. Mater. Res. 4, 267272 (1989).CrossRefGoogle Scholar