Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T11:57:52.594Z Has data issue: false hasContentIssue false

Synthetic diamonds produce pressure of 125 GPa (1.25 Mbar)

Published online by Cambridge University Press:  31 January 2011

Arthur L. Ruoff
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Samuel T. Weir
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Keith E. Brister
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Yogesh K. Vohra
Affiliation:
Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Get access

Abstract

Synthetic gray-blue diamonds were used as anvils in a diamond anvil cell to produce a pressure of 125 GPa (1.25 Mbar) in a gasketed sample. Pressure was measured by x-ray diffraction methods by using gold and iron as a calibrant and also by optical methods based on the shift of the fluorescence peaks of ruby with pressure. The future potential of synthetic diamonds for ultrapressure research is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Diamonds, , Myth, Magic and Reality, edited by Maillard, R. (Crown, New York, 1980).Google Scholar
2Bruton, E., Diamonds (Chilton, Radnor, PA, 1978).Google Scholar
3Physical Properties of Diamond, edited by Berman, R. (Oxford U.P., Oxford, 1965).Google Scholar
4The Properties of Diamond, edited by Field, J. E. (Academic, New York, 1979).Google Scholar
5Davis, G., Diamonds (Adam Hilger, Bristol, England, 1984).Google Scholar
6Haggerty, S. E., Nature 320, 34 (1986).CrossRefGoogle Scholar
7Nasau, K. and Nasau, J., Lapidary J. 32 (2), 490 (1978).Google Scholar
8Nasau, K., Gems Made by Man (Chilton, Radnor, PA, 1980).Google Scholar
9Strong, H. M., General Electric Co. Report No. 85 CRD 138, July 1985.Google Scholar
10Strong, H. M., U.S. Patent No. 2,947,609, 2 August 1960; T. Hall, H. M. Strong, and R. Wentorf, Jr., U.S. Patent No. 2,947,610, 2 August 1960.Google Scholar
11Synthesis of Diamond (General Electric Co., Schenectady, New York, 1970).Google Scholar
12Wentorf, R. H. Jr., J. Phys. Chem. 75, 1833 (1971).Google Scholar
13Strong, H. M. and Chrenko, R. M., J. Phys. Chem. 75, 1838 (1971).CrossRefGoogle Scholar
14Strong, H. M. and Wentorf, R. H. Jr., Naturwiss. 59, 1 (1972).CrossRefGoogle Scholar
15Strong, H. M. and Tuft, R. E., U.S. Patent No. 4,034,066, 5 July 1977; H. M. Strong, U.S. Patent No. 4,042,673, 16 August 1977; H. M. Strong and R. E. Tuft, U.S. Patent No. 4,073,380,14 February 1978; H. M. Strong, U.S. Patent No. 4,322,396, 30 March 1982; H. M. Strong, U.S. Patent No. 4,340,576, 20 July 1982.Google Scholar
16Strong, H. M., in the International Gemological Symposium Proceedings, 1982, Gemoiogical Institute of America, Santa Monica, California, p. 51.Google Scholar
17Crowningshield, R., Gems Gemol. 13 (10), 302 (1971).Google Scholar
18Koivula, J. I. and Fryar, C. W., Gems Gemol. 20, 146 (1984).CrossRefGoogle Scholar
19Rossman, G. R. and Kirschvink, J. L., Gems Gemol. 20, 163 (1984).CrossRefGoogle Scholar
20Whitlock, J. and Ruoff, A. L., Scr. Metall. 15, 525 (1981).CrossRefGoogle Scholar
21Moss, W. C., Hallquist, J. O., Reichlin, R., Goettel, K. A., and Martin, S., Appl. Phys. Lett. 48, 1258 (1986).CrossRefGoogle Scholar
22Xu, J. A., Mao, H. K., and Bell, P. M., Science 232, 1404 (1986).CrossRefGoogle Scholar
23Mao, H. K., Bell, P. M., Shaner, J. W., and Steinberg, D. J., J. Appl. Phys. 49, 3276 (1978).Google Scholar
24Jayaraman, A., Rev. Mod. Phys. 55, 65 (1983).Google Scholar
25Jayaraman, A., Rev. Sci. Instrum. 57, 1013 (1986).CrossRefGoogle Scholar
26Onodera, A., Furuno, K., and Yazu, S., Science 232, 1419 (1986).Google Scholar
27Mao, H. K. and Bell, P. M., Science 200, 1146 (1978).CrossRefGoogle Scholar
28Baublitz, M. A., Arnold, V., and Ruoff, A. L., Rev. Sci. Instrum. 52, 1616 (1981).CrossRefGoogle Scholar
29Vohra, Y. K., Brister, K. E., Desgreniers, S., RuofF, A. L., Chang, K. J., and Cohen, M. L., Phys. Rev. Lett. 56, 1944 (1986).CrossRefGoogle Scholar
30Brister, K. E., Vohra, Y. K., and Ruoff, A. L. (in preparation).Google Scholar
31Brister, K. E., Vohra, Y. K., and Ruoff, A. L., Rev. Sci. Instrum. 57, 2560 (1986).Google Scholar
32Jamieson, J. C., Fritz, J., and Manghani, M. H., Adv. Earth Planet. Sci. 12, 27 (1980).Google Scholar
33Birth, F., J. Geophys. Res. 83, 127 (1978).Google Scholar
34Brown, J. M. and McQueen, R. G., in High Pressure Research in Geophysics, edited by Akimoto, S. and Manghnani, M. H. (Reidel, Dordrecht, Holland, 1982), p. 611.CrossRefGoogle Scholar
35Duclos, S. J., Vohra, Y. K., and Ruoff, A. L. (in preparation).Google Scholar
36Ruoff, A. L. in High Pressure in Research and Industry, edited by Backman, C.M., Johannisson, T., and Tegner, L. (Arkitektkopia, Uppsala, Sweden, 1982), Vol. I, p. 108.Google Scholar
37Chan, K. S., Master's Thesis, Cornell University, 1977.Google Scholar
38Mao, H. K., Goettel, K. A., and Bell, P. M. in Solid State Physics under Pressure: Recent Advances with Anvil Devices, edited by Minomura, S. (Reidel, Boston, 1985), p. 11.Google Scholar