Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:43:11.640Z Has data issue: false hasContentIssue false

Textures and compressive properties of ferromagnetic shape-memory alloy Ni48Mn25Ga22Co5 prepared by isothermal forging process

Published online by Cambridge University Press:  01 March 2006

Y.D. Wang*
Affiliation:
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People’s Republic of China
D.Y. Cong
Affiliation:
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People’s Republic of China
R. Lin Peng
Affiliation:
The Studsvik Neutron Research Laboratory (NFL), Uppsala University, S-61182 Nyköping, Sweden; and Department of Mechanical Engineering, Linköping University, S-58183 Linköping, Sweden
P. Zetterström
Affiliation:
The Studsvik Neutron Research Laboratory (NFL), Uppsala University, S-61182 Nyköping, Sweden
Z.F. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
X. Zhao
Affiliation:
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People’s Republic of China
L. Zuo
Affiliation:
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: ydwang@mail.neu.edu.cn
Get access

Abstract

A ferromagnetic shape-memory alloy Ni48Mn25Ga22Co5 was prepared by the induction melting and isothermal forging process. Dynamic recrystallization occurs during the isothermal forging. The deformation texture was studied by the neutron diffraction technique. The main texture components consist of (110)[112] and (001)[100], which suggested that in-plane plastic flow anisotropy should be expected in the as-forged condition. The uniaxial compression fracture strain in the forged alloy reaches over 9.5%. The final room-temperature fracture of the polycrystalline Ni48Mn25Ga22Co5 is controlled mainly by intergranular mode.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sozinov, A., Likhachev, A.A., Lanska, N., Ullakko, K.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746 (2002).CrossRefGoogle Scholar
2.Murray, S.J., Marioni, M.A., Kukla, A.M., Robinson, J., O’Handley, R.C., Allen, S.M.: Large field induced strain in single crystalline Ni-Mn-Ga ferromagnetic shape memory alloy. J. Appl. Phys. 87, 5774 (2000).CrossRefGoogle Scholar
3.Wedel, B., Suzuki, M., Murakami, Y., Wedel, C., Suzuki, T., Shindo, D., Itagaki, K.: Low temperature crystal structure of Ni–Mn–Ga alloys. J. Alloys Compd. 290, 137 (1999).CrossRefGoogle Scholar
4.Webster, P.J., Ziebeck, K.R.A., Town, S.L., Peak, M.S.: Magnetic order and Phase transformation in Ni2MnGa. Philos. Mag. B 49, 295 (1984).CrossRefGoogle Scholar
5.Khovailo, V.V., Takagi, T., Tani, J., Levitin, R.Z., Cherechukin, A.A., Matsumoto, M., Note, R.: Magnetic properties of Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural transition. Phys. Rev. B 65, 092410 (2002).CrossRefGoogle Scholar
6.Besseghimi, S., Villa, E., Passaretti, F., Pini, M., Bonfanti, F.: Plastic deformation of NiMnGa polycrystals. Mater. Sci. Eng. A 378, 415 (2004).CrossRefGoogle Scholar
7.Lanska, N., Söderberg, O., Sozinov, A., Ge, Y., Ullakko, K., Lindroos, V.K.: Composition and temperature dependence of the crystal structure of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 8074 (2004).CrossRefGoogle Scholar
8.Chernenko, V.A., Cesari, E., Kokorin, V.V., Vitenko, I.N.: The development of new ferromagnetic shape memory alloys in Ni–Mn–Ga system. Scripta Metall. Mater. 33, 1239 (1995).CrossRefGoogle Scholar
9.Xu, H., Ma, Y., Jiang, C.: A high-temperature shape-memory alloy Ni54Mn25Ga21. Appl. Phys. Lett. 82, 3206 (2003).CrossRefGoogle Scholar
10.Chernenko, V.A., L’Vov, V., Pons, J., Cesari, E.: Superelasticity in high-temperature Ni–Mn–Ga alloys. J. Appl. Phys. 93, 2394 (2003).CrossRefGoogle Scholar
11.Cherechukin, A.A., Takagi, T., Miki, H., Matsumoto, M., Ohtsuka, M.: Influence of three-dimensional transition elements on magnetic and structural phase transitions of Ni–Mn–Ga alloys. J. Appl. Phys. 95, 1740 (2004).CrossRefGoogle Scholar
12.Jiang, C., Feng, G., Xu, H.: Co-occurrence of magnetic and structural transitions in the Heusler alloy Ni53Mn25Ga22. Appl. Phys. Lett. 80, 1619 (2002).CrossRefGoogle Scholar
13.Wannberg, A., Mellergård, A., Zetterström, P., Delaplane, R., Grönros, M., Karlsson, L-E., McGreevy, R.L.: SLAD: A neutron diffractometer for the study of disordered materials. J. Neutron Res. 8, 133 (1999).CrossRefGoogle Scholar
14.Kocks, U.F., Kallend, J.S., Wenk, H.R., Rollett, A.D., Wright, S.I.: PopLA: Preferred Orientation Package—Los Alamos (Los Alamos National Laboratory, Los Alamos, NM, 1995).Google Scholar
15.Cong, D.Y., Zetterström, P., Wang, Y.D., Delaplane, R., Peng, R. Lin, Zhao, X., Zuo, L.: Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K. Appl. Phys. Lett. 87, 111906 (2005).CrossRefGoogle Scholar
16.Ray, R.K., Jonas, J.J., Butrón-Guillén, M.P., Savoie, J.: Transformation textures in steels. ISIJ Int. 34, 927 (1994).CrossRefGoogle Scholar
17.Brückner, G., Gottstein, G.: Transformation textures during diffusional α→γ→α phase transformations in ferritic steels. ISIJ Int. 41, 468 (2001).CrossRefGoogle Scholar
18.Divinski, S.V., Dnieprenko, V.N., Ivasishin, O.M.: Effect of phase transformation on texture formation in Ti-base alloys. Mater. Sci. Eng. A 243, 201 (1998).CrossRefGoogle Scholar
19.Sakata, T., Yasuda, H.Y., Umakoshi, Y.: Formation process of transformation texture from the β to α phase in Cu–42 mass% Zn alloy. Scripta Mater. 43, 411 (2000).CrossRefGoogle Scholar
20.Yasuda, H.Y., Sakata, T., Umakoshi, Y.: Variant selection in transformation texture from the β to α phase in Cu–40 mass% Zn alloy. Acta Mater. 47, 1923 (1999).CrossRefGoogle Scholar
21.Inoue, H., Ishio, M., Takasugi, T.: Texture of TiNi shape memory alloy sheets produced by roll-bonding and solid phase reaction from elementary metals. Acta Mater. 51, 6373 (2003).CrossRefGoogle Scholar
22.Brown, P.J., Crangle, J., Kanomata, T., Matsumoto, M., Neumann, K-U., Ouladdiaf, B., Ziebeck, K.R.A.: The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J. Phys.: Condens. Matter 14, 10159 (2002).Google Scholar
23.Pons, J., Chernenko, V.A., Santamarta, R., Cesari, E.: Crystal structures of martensitic phases in Ni–Mn–Ga shape memory alloys. Acta Mater. 48, 3027 (2000).CrossRefGoogle Scholar
24.Tsuchiya, K., Tsutsumi, A., Ohtsuka, H., Umemoto, M.: Modification of Ni–Mn–Ga ferromagnetic shape memory alloy by addition of rare earth elememts. Mater. Sci. Eng. A 378, 370 (2004).CrossRefGoogle Scholar
25.Jee, K.K., Potapov, P.L., Song, S.Y., Shin, M.C.: Shape memory effect in NiAl and NiMn-based alloys. Scripta Mater. 36, 207 (1997).CrossRefGoogle Scholar