Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T03:12:46.006Z Has data issue: false hasContentIssue false

Theory of the time-lag diffusion method for the case of an outgassing solid

Published online by Cambridge University Press:  31 January 2011

James K. Baird
Affiliation:
Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama 35802
Jenn-Shing Chen
Affiliation:
Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China
Get access

Abstract

In the ordinary application of the time-lag method to the measurement of the diffusion coefficient of a gas passing through a plane sheet of an inert solid, the gas is pressurized on one side of the sheet and evacuated on the other. After decay of transients, the cumulative amount, Q(t), of gas diffused through the sheet in time, t, assumes the “time-lag” form, Q(t) = A(t – L). Measurements of the slope, A, and the intercept, L, can be used to determine the diffusion coefficient and the solubility of the gas in the solid. We have rederived this law for the case of a solid that is actively evolving this same gas at an arbitrary rate and have used it to predict the rate of outgassing of the solid upon standing. Practical applications of the theory include radioactive decay of minerals, rejection of plasticizers by plastics, and the decomposition of solid rocket propellants.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jost, W., Diffusion in Solids, Liquids, and Gases (Academic Press, New York, 1960), p. 44.Google Scholar
2Crank, J., The Mathematics of Diffusion (Oxford University Press, London, 1957), p. 48.Google Scholar
3McBreen, J., Nains, L., and Beck, W., J. Electrochem. Soc. 113, 1218 (1966).CrossRefGoogle Scholar
4lino, M., Acta Metall. 30, 367 (1982).Google Scholar
5Kompaniets, T. N. and Kurdyumov, A. A., Prog. Surf. Sci. 17, 79 (1984).CrossRefGoogle Scholar
6Schmidt, A. S., Verfuss, F., and Wicke, E., J. Nucl. Mater. 131, 247 (1985).CrossRefGoogle Scholar
7Nishimura, R., Latanision, R.M., and Hukler, G. K., Mater. Sci. Eng. 90, 243 (1987).CrossRefGoogle Scholar
8Yen, S. K. and Shih, H. C., J. Electrochem. Soc. 137, 2028 (1990).Google Scholar
9Iyer, R.N. and Pickering, H.W., Ann. Rev. Mater. Sci. 20, 299 (1990).Google Scholar
10McBride, J. S., Massaro, T. A., and Cooper, S. L., J. Appl. Polym. Sci. 23, 201 (1979).CrossRefGoogle Scholar
11Springer, J. and Brito, H., J. Appl. Polym. Sci. 24, 329 (1979).CrossRefGoogle Scholar
12Napp, S.J., Huang, W., and Yang, M., J. Appl. Polym. Sci. 28, 2793 (1983).CrossRefGoogle Scholar
13Bellobono, I.R., Marcandalli, B., Selli, E., and Polissi, A., J. Appl. Polym. Sci. 29, 3185 (1984).CrossRefGoogle Scholar
14Schaupert, K., Albrecht, D., Armbruster, P., and Spohr, R., Appl. Phys. A 44, 347 (1987).CrossRefGoogle Scholar
15Alger, M.M. and Stanley, T.J., J. Appl. Polym. Sci. 36, 1501 (1988).CrossRefGoogle Scholar
16Higuchi, A. and Nakagawa, T., J. Appl. Polym. Sci. 37, 2181 (1989).Google Scholar
17Irene, E.A., J. Electrochem. Soc. 129, 413 (1982).CrossRefGoogle Scholar
18Meier, H., Zummerhackl, E., Hecker, W., Zeitler, G., and Menge, P., Radiochem. Acta 44-45, 239 (1988).CrossRefGoogle Scholar
19Ref. 1, pp. 300304.Google Scholar
20Ref. 1, pp. 314319.Google Scholar
21Arfken, G., Mathematical Methods for Physicists (Academic Press, New York, 1985), pp. 824859.Google Scholar
22Ref. 21, p. 831.Google Scholar
23See, for example, Nelson, A. L., Folley, K. W., and Coral, M., Differential Equations, 2nd ed. (D. C. Heath and Co., Boston, MA, 1960), pp. 9799.Google Scholar
24Ref. 21, p. 400.Google Scholar
25Gradshteyn, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products (Academic Press, New York, 1980), p. 7, formula 0.234.5.Google Scholar
26Chen, J. S. and Rosenberger, F., J. Phys. Chem. 95, 10164 (1991).CrossRefGoogle Scholar
27Daynes, H., Proc. R. Soc. London A 97, 286 (1920).Google Scholar