Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:47:05.445Z Has data issue: false hasContentIssue false

Thermal cycling effects in high temperature Cu–Al–Ni–Mn–B shape memory alloys

Published online by Cambridge University Press:  31 January 2011

J. Font
Affiliation:
Departament de Física i Enginyeria Nuclear, ETSII, Universitat Politècnica de Catalunya, Avda. Diagonal, 647 E-08028 Barcelona, Spain
J. Muntasell
Affiliation:
Departament de Física i Enginyeria Nuclear, ETSII, Universitat Politècnica de Catalunya, Avda. Diagonal, 647 E-08028 Barcelona, Spain
J. Pons
Affiliation:
Departament de Física, Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, E-07071 Palma de Mallorca, Spain
E. Cesari
Affiliation:
Departament de Física, Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, E-07071 Palma de Mallorca, Spain
Get access

Abstract

The effects of thermal cycling through the martensitic transformation have been studied in three Cu–Al–Ni–Mn–B high temperature shape memory alloys. An increase of the martensitic transformation temperatures with the number of cycles (up to ∼7 K after 60 cycles) has been generally observed by DSC measurements. The microstructure of these alloys is rather complicated, with the presence of big manganese or aluminum boride particles and small boron precipitates, as well as the formation of dislocations during thermal cycling. By means of aging experiments, it has been shown that the evolution of transformation temperatures during cycling is mainly due to the step-by-step aging in parent phase accompanying the thermal cycling, and that the dislocations formed during cycling have only a very small effect, at least up to 60 cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Van Humbeeck, J., and Delaey, L., in The Martensitic Transformation in Science and Technology, edited by Hornbogen, E., and Jost, N. (DGM Informationsgesellschaft, Oberursel, Germany, 1989), p. 15.Google Scholar
2.Sugimoto, K., Kamei, K., Matsumoto, H., Komatsu, S., and Sugimoto, T., J. de Physique 43, C4-761 (1982).Google Scholar
3.Sure, G. N., and Brown, L. C., Metall. Trans. 15A, 1613 (1984).CrossRefGoogle Scholar
4.Van Humbeeck, J., Chandrasekaran, M., and Delaey, L., I.S.I.J. Int. 29, 388 (1989).Google Scholar
5.Dunne, D. P., Van Humbeeck, J., and Delaey, L., in Shape Memory Materials, edited by Otsuka, K., and Shimizu, K. (Mater. Res. Soc. Symp. Proc. 9, Pittsburgh, PA, 1989), p. 329.Google Scholar
6.Eucken, S., Kobus, E., and Hornbogen, E., Z. Metallk. 82, 640 (1991).Google Scholar
7.Morris, M. A., and Lipe, T., Acta Metall. Mater. 42, 1583 (1994).CrossRefGoogle Scholar
8.Abu-Arab, A., Chandrasekaran, M., and Ahlers, M., Scripta Metall. 18, 899 (1984).CrossRefGoogle Scholar
9.Ahlers, M., in Proc. Int. Conf. on Martensitic Transformations, edited by I., Tamura (The Japan Institute of Metals, Sendai, Japan, 1987), p. 786.Google Scholar
10.Abu-Arab, A., and Ahlers, M., J. de Physique 43, C4-709 (1982).Google Scholar
11.Dunne, D., Van Humbeeck, J., and Chandrasekaran, M., Mater. Sci. Forum 56–58, 463 (1990).CrossRefGoogle Scholar
12.Itsumi, Y., Miyamoto, Y., Takashima, T., Kamei, K., and Sugimoto, K., Mater. Sci. Forum 56–58, 469 (1990).CrossRefGoogle Scholar
13.Seguí, C., and Cesari, E., Trans. Mater. Res. Soc. Jpn. 18B, 919 (1994).Google Scholar
14.Ríos-Jara, D., and Guénin, G., Acta Metall. 35, 109 (1987).CrossRefGoogle Scholar
15.Sade, M., Rapacioli, R., and Ahlers, M., Acta Metall. 33, 487 (1985).CrossRefGoogle Scholar
16.Tadaki, T., Takamori, M., and Shimizu, K., Transact. JIM 28, 120 (1987).CrossRefGoogle Scholar
17.Auguet, C., Cesari, E., and Ll. Mañosa, J. Phys. D: Appl. Phys. 22, 1712 (1989).CrossRefGoogle Scholar
18.Nakata, Y., Tadaki, T., and Shimizu, K., Transact. JIM 26, 646 (1985).CrossRefGoogle Scholar
19.Fisher, P., Dunne, D., and Kennon, N., in Proc. Int. Conf. on Martensitic Transformations, edited by I., Tamura (The Japan Institute of Metals, Sendai, Japan, 1987), p. 946.Google Scholar
20.Morris, M. A., and Gunter, S., Scripta Metall. Mater. 26, 1663 (1992).CrossRefGoogle Scholar
21.Rapacioli, R., and Ahlers, M., Acta Metall. 27, 777 (1979).CrossRefGoogle Scholar
22.Seguí, C., and Cesari, E., J. de Physique 5, C2-187 (1995).Google Scholar
23.Seguí, C., and Cesari, E., J. Mater. Sci. 30, 5700 (1995).CrossRefGoogle Scholar
24.Morris, M. A., Acta Metall. Mater. 40, 1573 (1992).CrossRefGoogle Scholar
25.Rapacioli, R., Chandrasekaran, M., and Lovey, F. C., in Solid-Solid Phase Transformations, edited by Aaronson, H. I., Laughlin, D. E., Sekerka, R. F., and Wayman, C. M. (The Metallurgical Society of AIME, Warrendale, PA, 1982), p. 739.Google Scholar
26.Pons, J., Lovey, F. C., and Cesari, E., Acta Metall. Mater. 38, 2733 (1990).CrossRefGoogle Scholar
27.Marukawa, K., and Kajiwara, S., Philos. Mag. A55, 85 (1987).CrossRefGoogle Scholar
28. J. Ch. Li and Ansell, G. S., Metall. Trans. 14A, 1293 (1983).Google Scholar
29.Viñals, J., Torra, V., Planes, A., and Macqueron, J. L., Philos. Mag. A50, 653 (1984).CrossRefGoogle Scholar
30.Rapacioli, R., and Chandrasekaran, M., in Proc. Int. Conf. on Martensitic Transformations, edited by Dept. Mater. Sci. and Eng., Massachusetts Inst. of Technology (MIT Press, Cambridge, MA, 1979), p. 596.Google Scholar
31.Auguet, C., Cesari, E., Rapacioli, R., and Ll. Mañosa, Scripta Metall. 23, 579 (1989).CrossRefGoogle Scholar