Published online by Cambridge University Press: 03 March 2011
The thermal recoverability of a nanoporous silica-based system modified by a cross-linked polyelectrolyte is investigated. At room temperature, as a nominally hydrostatic pressure is applied, the gel matrix can be partially dehydrated. The released water molecules will be forced into the initially energetically unfavorable nanopores and are “locked” there. At an elevated temperature, the infiltration pressure increases slightly, which is contradictory to the experimental data of the unmodified system. More importantly, the defiltration of the confined liquid is significantly promoted, leading to a much higher system recoverability.