Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T17:26:37.912Z Has data issue: false hasContentIssue false

Thin film deposition and interface characterization of YBCO on LiNbO3 substrates

Published online by Cambridge University Press:  03 March 2011

N.J. Wu
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
X.Y. Li
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
J. Li
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
H. Lin
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
H. Fredricksen
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
K. Xie
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
A. Mesarwi
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
A. Ignaticv
Affiliation:
Texas Center for Superconductivity and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77204-5507
H.D. Shih
Affiliation:
Texas Instruments Inc., Corporate Research and Development, P.O. Box 655936, MS 150, Dallas, Texas 75265
Get access

Abstract

High transition temperature superconducting YBa2Cu3O7−x (YBCO) thin films have been epitaxially grown on YZ-cut LiNbO3 (LNO) substrates by the pulsed laser deposition technique. The interface between YBCO and LNO has been systematically investigated by scanning electron microscopy, atomic force microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Off-stoichiometry LiNbOx phases are found to segregate on the substrate surface because of lithium and oxygen vacancies formed during the high temperature YBCO growth. These submicrometer particles are observed along the Z-axis on the X-Z plane of LNO with height of ∼30 nm above the LNO surface. This rough growth surface results in YBa2Cu3O7−x thin films grown on the LNO surface that have reduced Jc and Tc, possibly limiting the use of YBCO/LNO heterostructures for surface acoustic wave (SAW) devices.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lakin, K.M., IEEE Trans. Microwave Theory and Tech. MTT-22, 418 (1974).Google Scholar
2Fredricksen, H., Ritums, D., Wu, N.J., Li, X.Y., and Ignatiev, A., Appl.Phys. Lett. 64, 3033 (1994).Google Scholar
3Hohler, A., Guggi, D., Neeb, H., and Heiden, C., Appl.Phys. Lett. 54, 1066 (1989).Google Scholar
4Guptasarma, P., Bendre, S.T., Ogale, S.B., Multani, M.S., and Vijayaraghavan, R., Physica C 203, 129 (1992).CrossRefGoogle Scholar
5Asami, H. and Watanabe, Y., Jpn. J. Appl. Phys. 33, L1073 (1994).CrossRefGoogle Scholar
6Lee, S.G., Koren, G., Gupta, A., Segmuller, A., and Chi, C.C., Appl. Phys. Lett. 55, 1261 (1989).CrossRefGoogle Scholar
7Wosik, J., Robin, T., Davis, M., Wolfe, J.C., Forster, K., Deshmukh, S., Bensaoula, A., Sega, R., Economou, D., and Ignatiev, A., in Science und Technology of Thin Film Superconductors 2, edited by McConnell, R.D. and Noufi, R. (Plenum Press, New York, 1990), p. 539.Google Scholar
8Ferrari, M.J., Johnson, M., Wellstood, F.C., Clarke, J., Inam, A., Wu, X.D., Nazar, L., and Venkatesan, T., Nature (London) 341, 732 (1989).CrossRefGoogle Scholar
9Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., and Luther, K.E., Appl. Phys. Lett. 56, 595 (1989).Google Scholar
10Hashiguchi, S., Min, E., Sakuta, K., Kobayashi, T., Jpn. J. Appl. Phys, 31, 780 (1992).CrossRefGoogle Scholar
11Feller, J., Levy, M., Sarma, B.K., Fredricksen, H., Ritums, D., Wu, N.J., Li, X.Y., and Ignatiev, A., IEEE Int. Ultrasonics Symp., Nov. 1–4, 1994, Cannes, France, QQ-2.Google Scholar
12Wu, N.J., Ignatiev, A., Meswari, A., and Shih, H.D., Jpn. J. Appl. Phys. 32, 5019 (1993).CrossRefGoogle Scholar
13Robin, T., Meswari, A., Wu, N.J., Fan, W.C., Sega, R., and Ignatiev, A., Appl. Phys. Lett. 59, 2323 (1991).Google Scholar
14Li, X.Y., Wu, N.J., Xie, K., Liu, J.S., Lin, H., Hung, T.Q., and Ignatiev, A., Physica C 232, 281 (1995).Google Scholar
15Chab, V. and Kubatova, J., Appl.Phys. A39, 67 (1986).Google Scholar
16Spyridelis, J., Delavignette, P., and Amelinckx, S., Phys. Status Solidi 19, 683 (1967).Google Scholar
17Koren, G., Gupta, A., Baseman, R., Latwyche, M., and Laibowitz, R., Appl.Phys. Lett. 55, 2450 (1989).Google Scholar
18Supriyo Data, Surface Acoustic Wave Devices (Prentice-Hall, Englewood Cliffs, NJ, 1986).Google Scholar