Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T09:50:15.867Z Has data issue: false hasContentIssue false

Topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs

Published online by Cambridge University Press:  03 March 2011

R. Yu*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
X.F. Zhang
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
L.L. He
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
H.Q. Ye
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
*
a)Address all correspondence to this author. e-mail: ryu@lbl.gov
Get access

Abstract

Using an all-electron, full potential first-principles method, we have investigated the topology of charge density and elastic anisotropy of Ti3SiC2 polymorphs comparatively. By analyzing the charge density topology, it was found that the Ti–Si bonds are weaker in β than in α, resulting in a destabilizing effect and lower Young’s modulus in directions between a and c axes for β. On the other hand, the Si–C bonds (absent in α) are formed in β in the c direction. The formation of the Si–C bonds not only mitigates the destabilizing effect of the weaker Ti–Si bonds, but also results in larger Young’s modulus in the c direction. In contrast to the high elastic anisotrophy, the elastic anisotropy of Ti3SiC2 is very low.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barsoum, M.W.: The MN+1AXN phases: A new class of solids. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
2.Goto, T. and Hirai, T.: Chemically vapor-deposited Ti3SiC2. Mater. Res. Bull. 22, 1195 (1987).CrossRefGoogle Scholar
3.Racault, C., Langlais, F. and Naslain, R.: Solid-state synthesis and characterization of the ternary phase Ti3SiC2. J. Mater. Sci. 29, 3384 (1994).CrossRefGoogle Scholar
4.Arunajatesan, S. and Carim, A.H.: Synthesis of titanium-silicon carbide. J. Am. Ceram. Soc. 78, 667 (1995).CrossRefGoogle Scholar
5.Barsoum, M.W. and El-Raghy, T.: Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953 (1996).CrossRefGoogle Scholar
6.Yu, R., Zhan, Q., He, L.L., Zhou, Y.C. and Ye, H.Q.: Stacking faults and grain boundaries of Ti3SiC2. Philos. Mag. Lett. 83, 325 (2003).CrossRefGoogle Scholar
7.Yu, R., Zhan, Q., He, L.L., Zhou, Y.C. and Ye, H.Q.: Si-induced twinning of TiC and formation of Ti3SiC2 platelets. Acta Mater. 50, 4127 (2002).CrossRefGoogle Scholar
8.Medvedeva, N.I., Novikov, D.L., Ivanovsky, A.L., Kuznetsov, M.V. and Freeman, A.J.: Electronic properties of Ti3SiC2-based solid solutions. Phys. Rev. B 58, 16042 (1998).CrossRefGoogle Scholar
9.Holm, B., Ahuja, R. and Johansson, B.: Ab initio calculations of the mechanical properties of Ti3SiC2. Appl. Phys. Lett. 79, 1450 (2001).CrossRefGoogle Scholar
10.Farber, L., Levin, I., Barsourn, M.W., El-Raghy, T. and Tzenov, T.: High-resolution transmission electron microscopy of some Tin+ 1AXn compounds (n = 1,2; A = Al or Si; X = C or N). J. Appl. Phys. 86, 2540 (1999).CrossRefGoogle Scholar
11.Yu, R., Zhan, Q., He, L.L., Zhou, Y.C. and Ye, H.Q.: Polymorphism of Ti3SiC2. J. Mater. Res. 17, 948 (2002).CrossRefGoogle Scholar
12.Yu, R.: Investigations of microstructures and electronic structures of Ti3SiC2 and TiAl, Ph.D. Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China, 2002.Google Scholar
13.Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893 (1991).CrossRefGoogle Scholar
14.Bader, R.F.W.: Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990).CrossRefGoogle Scholar
15.Popelier, P.: Atoms in Molecules: An Introduction (Pearson Education, Essex, U.K., 2000).Google Scholar
16.Eberhart, M.E., Donovan, M.M. and Outlaw, R.A.: Ab initio calculation of oxygen diffusivity in group-IB transition metals. Phys. Rev. B 46, 12744 (1992).CrossRefGoogle ScholarPubMed
17.Zou, P.F. and Bader, R.F.W.: A topological definition of a Wigner-Seitz and the atomic scattering factors. Acta Crystallogr. A 50, 714 (1994).CrossRefGoogle Scholar
18.Pendás, A. Martín, Costales, A. and Luaña, V.: Ions in crystals: The topology of the electron density in ionic materials. I. Fundamentals. Phys. Rev. B 55, 4275 (1997).CrossRefGoogle Scholar
19.Fuhr, J.D. and Sofo, J.O.: A Saúl: Coverage dependence study of the adsorption of Pd on MoS2(0001). Surf. Sci. 506, 161 (2002).CrossRefGoogle Scholar
20.Kioussis, N., Herbranson, M., Collins, E. and Eberhart, M.E.: Topology of electronic charge density and energetics of planar faults in fcc metals. Phys. Rev. Lett. 88, 125501 (2002).CrossRefGoogle ScholarPubMed
21.Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. and Luitz, J.: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität Wien, Austria, 2001).Google Scholar
22.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136 B864 (1964).CrossRefGoogle Scholar
23.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
24.Perdew, J.P., Burke, K. and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
25.Blöchl, P., Jepsen, O. and Andersen, O.K.: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).CrossRefGoogle ScholarPubMed
26.Nye, J.F.: Physical Properties of Crystals (Oxford University Press, Oxford, U.K., 1985).Google Scholar
27.Jona, F. and Marcus, P.M.: Hexagonal and tetragonal states of magnesium by first principles. Phys. Rev. B 66, 094104 (2002).CrossRefGoogle Scholar
28.Fast, L., Wills, J.M., Johansson, B. and Eriksson, O.: Elastic constants of hexagonal transition metals: Theory. Phys. Rev. B 51, 17431 (1995).CrossRefGoogle ScholarPubMed
29.Hill, R.: The elastic behaviour of a crystalline aggregates. Proc. Phys. Soc. London 65, 350 (1952).CrossRefGoogle Scholar
30.Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909 (1963).CrossRefGoogle Scholar