Published online by Cambridge University Press: 31 January 2011
The formation of barium hexaferrite from stoichiometric mixtures of BaCO3 and Fe2O3 has been investigated by means of differential thermal analysis and thermogravimetry, x-ray diffraction, and transmission electron microscopy–energy dispersive spectrometry. The first step, which implies decarbonatation and monoferrite formation, includes the formation of various intermediate compounds, which are formed at contact points between BaCO3 and Fe2O3 grains, and implies diffusion of both species. In the second step, barium hexaferrite is formed at interfaces between monoferrite and iron oxide mainly by diffusion of barium through the BF6 lattice into the hematite lattice. This exothermic reaction process leads to nonagglomerated pseudohexagonal platelets with an average particle size very close to the one of the starting powder mixture (∼1 μm).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.