Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:01:01.330Z Has data issue: false hasContentIssue false

Tribological properties of fullerenes C60 and C70 microparticles

Published online by Cambridge University Press:  31 January 2011

Wei Zhao*
Affiliation:
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148
Jinke Tang
Affiliation:
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148
Ashok Puri
Affiliation:
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148
Ray L. Sweany
Affiliation:
Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148
Yuxin Li
Affiliation:
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
Liquan Chen
Affiliation:
Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China
*
a) Author to whom correspondence should be addressed.
Get access

Abstract

The frictional behaviors of fullerenes C60 and C70 were studied because they were speculated to be solid lubricants. For the sublimated pure C60 films on Si(001), a high friction coefficient (0.55–0.8) was observed under different loads and pin materials. For the C70 film, the friction coefficient showed a pin dependence, which changed from 0.5 with an Al2O3 pin to about 0.9 with a 440 stainless steel pin. The relatively high friction coefficients of C60 and C70 films were due to the tendency of the C60 and C70 particles to clump and compress into high shear strength layers rather than due to the impurities in the fullerenes. The benzene-solvated C60 · 4C6H6 and C70 ·xC6H6 showed a lowered friction coefficient (0.25 for C60 · 4C6H6 and 0.3 for C70 · xC6H6), which might result from the lowered shear strength of the hcp structure of C60 · 4C6H6 and C70 ·xC6H6 molecular crystals in which the benzene molecules were intercalated.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., Nature (London) 318, 162 (1985).Google Scholar
2.Taylor, R., Avent, A. G., Dennis, T. J., Hare, J.P., Kroto, H. W., Walton, D. R. M., Holloway, J.H., Hope, E. G., and Langley, G. J., Nature (London) 355, 27 (1992).CrossRefGoogle Scholar
3.Blau, P. J. and Haberlin, C. E., Thin Solid Films 219, 129 (1992).Google Scholar
4.Gupta, B. K., Bhushan, B., Capp, C., and Coe, J.V., J. Mater. Res. 9, 2823 (1994).Google Scholar
5.Heiney, P. A., Fischer, J.E., McGhie, A. R., Romanow, W. J., Denenstein, A. M., McCauley, J. P., and Smith, A. B. III, Phys. Rev. Lett. 66, 2911 (1991).Google Scholar
6.Bhattacharya, R. S., Rai, A. K., Zabinski, J.S., and McDevitt, N. T., J. Mater. Res. 9, 1615 (1994).Google Scholar
7.Bhushan, B., Gupta, B. K., Van Cleef, G. W., Capp, C., and Coe, J.V., Appl. Phys. Lett. 62, 3253 (1993).Google Scholar
8.Meidine, M. F., Hitchcock, P.B., Kroto, H. W., Taylor, R., and Walton, D.R.M., J. Chem. Soc., Chem. Commun., 1534 (1992).CrossRefGoogle Scholar
9.Fleming, R. M., Kortan, A. R., Hessen, B., Siegrist, T., Thiel, F. A., Marsh, P., Haddon, R.C., Tycko, R., Dabbagh, G., Kaplan, M.L., and Mujsce, A. M., Phys. Rev. B 44, 888 (1991).Google Scholar
10.Gorun, S. M., Creegan, K.M., Sherwood, R.D., Cox, D.M., Day, V.W., Day, C. S., Upton, R. M., and Briant, C. E., J. Chem. Soc., Chem. Commun., 1556 (1991).Google Scholar
11.Shi, X. D., Kortan, A. R., Williams, J.M., Kini, A. M., Savall, B. M., and Chaikin, P. M., Phys. Rev. Lett. 68, 827 (1992).Google Scholar
12.Zhao, W., Zhou, W.L., Chen, L.Q., Huang, Y. Z., Zhang, Z. B., Fung, K. K., and Zhao, Z. X., J. Solid State Chem. 112, 412 (1994).Google Scholar
13.Zhou, W.L., Zhao, W., Fung, K.K., Chen, L.Q., and Zhang, Z.B., Physica C 214, 19 (1993).Google Scholar
14.Vaughan, G. B. M., Heiney, P. A., Fischer, J.E., Luzzi, D. E., Ricketts-Foot, D. A., McGhie, A. R., Hui, Y. W., Smith, A. L., Cox, D. E., Romanow, W. J., Allen, B. H., Coustel, N., McCauley, J. P. Jr, and Smith, A. B. III, Science 254, 1350 (1991).Google Scholar
15.Ossipyan, Yu.A., Bobrov, V. S., Grushko, Yu. S., Dilanyan, R. A., Zharikov, O. V., Lebyodkin, M. A., and Sh., V.Sheckhtman, Appl. Phys. A 56, 413 (1993).CrossRefGoogle Scholar
16.Chase, B., Herron, N., and Holler, E., J. Phys. Chem. 96, 4262 (1992).Google Scholar
17.Krätschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 (1990).Google Scholar
18.Zhao, W., Tang, J., Puri, A., Falster, A. U., and Simmons, W. B. Jr, in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M. D., Donley, M. S., Bogy, D., and Field, J.E. (Mater. Res. Soc. Symp. Proc. 383, Pittsburgh, PA, 1995), p. 313.Google Scholar
19.Balch, A. L., Lee, J. W., Noll, B. C., and Olmstead, M. M., J. Chem. Soc., Chem. Commun., 56 (1993).Google Scholar
20.Ceolin, R., Agafonov, V., Bachet, B., Gonthier-Vassal, A., Szwarc, H., Toscani, S., Keller, G., Fabre, C., and Rassat, A., Chem. Phys. Lett. 244, 100 (1995).Google Scholar
21.Ceolin, R., Agafonov, V., Andre, D., Dworkin, A., Szwarc, H., Dugue, J., Keita, B., Nadjo, L., Fabre, C., and Rassat, A., Chem. Phys. Lett. 208, 259 (1993).CrossRefGoogle Scholar
22.Geiser, U., Kumar, S. K., Savall, B. M., Harried, S. S., Carlson, K. D., Mobley, P. R., Wang, H. H., Williams, J. M., Botto, R. E., Liang, W., and Whangbo, M.-H., Chem. Mater. 4, 1077 (1992).Google Scholar
23.Kikuchi, K., Suzuki, S., Saito, K., Shiromaru, H., Zakhidov, A. A., Ugawa, A., Imaeda, K., Inokuchi, H., and Yakushi, K., Physica C 185–189, 415 (1991).Google Scholar
24.Pekker, S., Faigel, G., Fodor-Csorba, K., Granasy, L., Jakab, E., and Tegze, M., Solid State Commun. 83, 423 (1992).Google Scholar
25.Zhao, W., Tang, J., O'Connor, C. J., and O'Connor, C. E., unpublished.Google Scholar