Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T00:10:44.806Z Has data issue: false hasContentIssue false

Ultrasonic velocity and attenuation in a TaH0.51 hydride single crystal

Published online by Cambridge University Press:  03 March 2011

L. Di Masso
Affiliation:
Physics Department, University of Perugia, Perugia, Italy
A. Biscarini
Affiliation:
Physics Department, University of Perugia, Perugia, Italy
B. Coluzzi
Affiliation:
Physics Department, University of Perugia, Perugia, Italy
F.M. Mazzolai
Affiliation:
Physics Department, University of Perugia, Perugia, Italy
Get access

Abstract

Ultrasonic propagation of longitudinal waves (CL mode) has been investigated as a function of temperature in a single crystal of a TaH0.51 hydride. Stepwise changes of the elastic constant CL and of the attenuation A have been observed in the vicinity of the β ↔ ∊ and ∊ ↔ α phase transitions. These changes occur over narrow temperature ranges corresponding to regions of coexistence of two phases. A relatively small temperature dependent softening is displayed by CL on approaching Tβ→∊ from the low temperature side. At the transition temperatures no divergency has been observed in the attenuation, which appears to originate from domain boundary motions, rather than from the transitions themselves. A determination of the H diffusion coefficient by a permeation method at high temperature supports a view that adiabatic tunneling is an effective mechanism even at temperatures as high as 1173 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garland, C. V., Physical Acoustics, edited by Mason, W. P. and Thurston, R.N. (Academic Press, New York, 1970), Vol. VII, p. 51.Google Scholar
2Rehwald, W., Adv. Phys. 22, 721 (1973).CrossRefGoogle Scholar
3Schwabl, F., Phys. Rev. B 7, 2038 (1976).CrossRefGoogle Scholar
4Landau, L. D. and Khalatnikov, I. M., Dokl. Akad. Nauk. 96, 469 (1954).Google Scholar
5Levanyuk, A. P., Sov. Phys. JEPT 22, 901 (1966).Google Scholar
6Holt, R. M. and Fossheim, K., Phys. Rev. B 24, 2680 (1981).CrossRefGoogle Scholar
7Shober, T., Proc. Int. Conf. on Hydrogen in Metals, Paris, 1977, paper 1D2.Google Scholar
8Magerl, A., Berre, B., and Alefeld, G., Phys. Status Solidi (a) 36, 161 (1976).CrossRefGoogle Scholar
9Fisher, E. S., Westlake, D. G., and Okers, S. T., Phys. Status Solidi (a) 28, 591 (1975).CrossRefGoogle Scholar
10Leisure, R. G., Kanashiro, T. K., Riedi, P. C., and Hsu, D. K., Phys. Rev. B 27, 4872 (1983).CrossRefGoogle Scholar
11Cho, Y. and Leisure, R. G., Phys. Rev. B 38, 5748 (1988).CrossRefGoogle Scholar
12Gerken, B. M., Griessen, R., Huisman, L. M., and Walker, E., Phys. Rev. B 26, 1637 (1982).CrossRefGoogle Scholar
13Amano, M. and Birnbaum, H. K., Proc. Int. Conf. on Internal Friction and Ultrasonic Attenuation in Solids (Univ. of Tokyo Press, Tokyo, 1977), p. 323.Google Scholar
14Mazzolai, F. M. and Birnbaum, H. K., I. Phys. F: Met. Phys. 15, 507 (1985); 15, 524 (1985).CrossRefGoogle Scholar
15Mazzolai, F. M. and Birnbaum, H. K., J. Phys. 48, C8, 263 (1987).Google Scholar
16Melik-Shakhnazarov, V. A., Bydlinskaya, I. N., Naskidashvili, I. A., Arabadzhyan, N. A., and Chachanidze, R. V., Sov. Phys. JEPT 54, 168 (1982).Google Scholar
17Hampele, M., Majer, G., Messer, R., and Seeger, A., J. Less-Comm. Metals 172, 631 (1991).CrossRefGoogle Scholar
18Emin, D., Baskes, M. I., and Wilson, W. D., Z. Phys. Chem. N. F. 114, 231 (1979).CrossRefGoogle Scholar
19Papadakis, E. P., J. Appl. Phys. 35, 1474 (1964).CrossRefGoogle Scholar
20Westlake, D. G., Scripta Metall. 11, 689 (1977).CrossRefGoogle Scholar
21Carslaw, H. S. and Jaeger, J. C., Heat Conduction in Solids (Oxford University Press, Oxford, 1959), p. 199.Google Scholar
22Eguchi, T. and Morozumi, S., J. Jpn. Inst. Met. 41, 231 (1979).Google Scholar
23Qi, Zh., Volkl, J., Lasser, R., and Wenzl, H., J. Phys. F: Metal Phys. 13, 2053 (1983).CrossRefGoogle Scholar
24Yakovlev, I. A. and Velichkina, T. S., Usp. Fiz. Nauk. 63, 411 (1957).CrossRefGoogle Scholar
25Pytte, E., Phys. Rev. B 1, 924 (1970).CrossRefGoogle Scholar
26Murata, K. K., Phys. Rev. B 13, 4015 (1976).CrossRefGoogle Scholar
27Kawasaki, K., Phys. Rev. Lett. 26A, 543 (1968).CrossRefGoogle Scholar
28Wagner, H. and Homer, H., Adv. Phys. 23, 587 (1974).CrossRefGoogle Scholar
29Cannelli, G. and Mazzolai, F. M., Nuovo Cimento 64 B, 171 (1969).CrossRefGoogle Scholar
30Mazzolai, F. M., Bordoni, P. G., and Lewis, F. A., J. Phys. F: Metal Phys. 10, 781 (1980).CrossRefGoogle Scholar
31Mazzolai, F. M. and Lewis, F. A., J. Phys. F: Metal Phys., 15, 1261 (1985).CrossRefGoogle Scholar
32Biscarini, A., Coluzzi, B., and Mazzolai, F. M., Phys. Rev. B 49, 969 (1994).CrossRefGoogle Scholar