Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T02:31:35.010Z Has data issue: false hasContentIssue false

Undoped and doped GaN thin films deposited on high-temperature monocrystalline AlN buffer layers on vicinal and on-axis α(6H)–SiC(0001) substrates via organometallic vapor phase epitaxy

Published online by Cambridge University Press:  31 January 2011

T. Warren Weeks Jr.
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Michael D. Bremser
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
K. Shawn Ailey
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Eric Carlson
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
William G. Perry
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Edwin L. Piner
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Nadia A. El-Masry
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695–7907
Get access

Abstract

Monocrystalline GaN(0001) thin films have been grown at 950 °C on high-temperature, ≈ 100 nm thick, monocrystalline AlN(0001) buffer layers predeposited at 1100 °C on α(6H)−SiC(0001)Si substrates via OMVPE in a cold-wall, vertical, pancake-style reactor. These films were free of low-angle grain boundaries and the associated oriented domain microstructure. The PL spectra of the GaN films deposited on both vicinal and on-axis substrates revealed strong bound excitonic emission with a FWHM value of 4 meV. The near band-edge emission from films on the vicinal substrates was shifted slightly to a lower energy, indicative of films containing residual tensile stresses. A peak attributed to free excitonic emission was also clearly observed in the on-axis spectrum. Undoped films were too resistive for accurate Hall-effect measurements. Controlled n-type, Si-doping in GaN was achieved for net carrier concentrations ranging from approximately 1 × 1017 cm−3 to 1 × 1020 cm−3. Mg-doped, p-type GaN was achieved with nA−nD ≈ 3 × 1017 cm−3, ρ ≈ 7 Ω · cm, and μ ≈ 3 cm2/V · s. Double-crystal x-ray rocking curve measurements for simultaneously deposited 1.4 μm GaN films revealed FWHM values of 58 and 151 arcsec for deposition on on-axis and off-axis 6H−SiC(0001)Si substrates, respectively. The corresponding FWHM values for the AlN buffer layers were approximately 200 and 400 arcsec, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haase, M.A., Qui, J., DePuydt, J.M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).CrossRefGoogle Scholar
2.Jeon, H., Ding, J., Nurmikko, A. V., Xie, W., Grillo, D.C., Kobayashi, M., Gunshor, R.L., Hua, G.C., and Otsuka, N., Appl. Phys. Lett. 60, 2045 (1992).CrossRefGoogle Scholar
3.Xie, W., Grillo, D.C., Gunshor, R.L., Kobayashi, M., Jeon, H., Ding, J., Nurmikko, A.V., Hua, G. C., and Otsuka, N., Appl. Phys. Lett. 60, 1999 (1992).CrossRefGoogle Scholar
4.Strite, S. and Morkoc, M., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
5.Gershenzon, M., Wang, D.E., and Ta, L., in Proceedings 1981 International Optoelectronics Workshop, Tainan, Taiwan, December 1981, edited by Chang, D. Y. (National Cheng Kung University, Tainan, Taiwan), p. 139.Google Scholar
6.Davis, R. F., Physica B 185, 1 (1993).CrossRefGoogle Scholar
7.Yoshida, S., Misawa, S., and Gonda, S., Appl. Phys. Lett. 42, 427 (1983).CrossRefGoogle Scholar
8.Yoshida, S., Misawa, S., and Gonda, S., J. Vac. Sci. Technol. B 1, 250 (1983).CrossRefGoogle Scholar
9.Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).CrossRefGoogle Scholar
10.Amano, H., Akasaki, I., Hiramatsu, K., Koide, N., and Sawaki, N., Thin Solid Films 163, 415 (1988).CrossRefGoogle Scholar
11.Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth 98, 209 (1989).CrossRefGoogle Scholar
12.Khan, M.A., Kuznia, J. N., Olson, D. T., and Kaplan, R., J. Appl. Phys. 73, 3108 (1993).CrossRefGoogle Scholar
13.Kuznia, J. N., Khan, M.A., Olson, D.T., Kaplan, R., and Freitas, J., J. Appl. Phys. 73, 4700 (1993).CrossRefGoogle Scholar
14.Qian, W., Skowronski, M., De Graef, M., Doverspike, K., Rowland, L.B., and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).CrossRefGoogle Scholar
15.Hiramatsu, K., Itoh, S., Amano, H., Akaski, I., Kuwano, N., Shiraishi, T., and Oki, K., J. Cryst. Growth 115, 628 (1991).CrossRefGoogle Scholar
16.Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
17.Kuwano, N., Shiraishi, T., Koga, A., Oki, K., Hiramatsu, K., Amano, H., Itoh, K., and Akasaki, I., J. Cryst. Growth 115, 381 (1991).CrossRefGoogle Scholar
18.Chernov, A. A., Modern Crystallography III: Crystal Growth (Springer, Berlin, 1984), p. 283.CrossRefGoogle Scholar
19.Nakamura, S., Jpn. J. Appl. Phys. 30, 1620 (1991).CrossRefGoogle Scholar
20.Wickenden, A. E., Wickenden, D. K., and Kistenmacher, T. J., J. Appl. Phys. 75, 5367 (1994).CrossRefGoogle Scholar
21.Wickenden, D. K., Miragliotta, J. A., Bryden, W. A., and Kistenmacher, T. J., J. Appl. Phys. 75, 7585 (1994).CrossRefGoogle Scholar
22.Powell, R. C., Tomasch, G. A., Kim, Y-W., Thornton, J. A., and Greene, J. E., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 525.Google Scholar
23.Born, P. J. and Robertson, D. S., J. Mater. Sci. 15, 30003 (1980).CrossRefGoogle Scholar
24.Matsubara, K. and Takagi, T., Jpn. J. Appl. Phys. 22, 511 (1982).CrossRefGoogle Scholar
25.Sitar, Z., Paisley, M. J., Yan, B., and Davis, R. F., in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J. T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990), p. 537.Google Scholar
26. Cree Research, Inc., 2810 Meridian Parkway, Suite 176, Durham, NC 27713.Google Scholar
27.Weeks, T. W. Jr., Bremser, M. D., Ailey, K. S., Carlson, E., Perry, W. G., and Davis, R. F. (unpublished).Google Scholar
28.Weeks, T. W. Jr., Bremser, M. D., Ailey, K. S., Carlson, E., Perry, W. G., Smith, L. L., Freitas, J. A. Jr., and Davis, R. F., Second Nitride Workshop, St. Louis, MO, October 17–18 (1994).Google Scholar
29.Tanaka, S., Kern, R. S., and Davis, R. F., Appl. Phys. Lett. 66, 37 (1995).Google Scholar
30.Weeks, T. W. Jr., Kum, D. W., Carlson, E., Perry, W. G., Ailey, K. S., and Davis, R. F., Second International High Temperature Electronics Conference, Charlotte, NC, June 5–10 (1994).Google Scholar
31.Dingle, R., Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).CrossRefGoogle Scholar
32.Edwards, N. V., Weeks, T. W. Jr., Bremser, M. D., Liu, H., Stall, R. A., Davis, R. F., and Aspnes, D. E., Materials Research Society Spring Meeting, San Francisco, CA, April 17–20 (1995).Google Scholar
33.Götz, W., Johnson, N. M., Street, R. A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995).CrossRefGoogle Scholar
34.Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar