Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:46:16.433Z Has data issue: false hasContentIssue false

Varied linear phason strain and its induced domain structure in quasicrystalline precipitates of Zr–Al–Ni–Cu–Nb bulk metallic glass matrix composites

Published online by Cambridge University Press:  12 November 2012

Lu Lu
Affiliation:
School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Dongxia Xiong
Affiliation:
School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Jianbo Wang*
Affiliation:
School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Dongshan Zhao
Affiliation:
School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China
Yufeng Sun
Affiliation:
Department of Materials Science and Engineering, Research Center for Materials, Zhengzhou University, Zhengzhou 450002, China
*
b)Address all correspondence to this author. e-mail: wang@whu.edu.cn
Get access

Abstract

Quasicrystalline precipitates in ZrAlNiCuNb alloy were systematically studied by transmission electron microscopy. It was found that precipitates always contain various linear phason strains. By electron diffraction analysis, two types of linear phason strain with two different directions perpendicular to the incident beam described by strain matrices with only one nonzero element were identified. After measuring the deviations of diffraction spots and quantitatively fitting against their perpendicular components of the reciprocal lattice vectors, the phason strain matrices were obtained. Domain structures formed as a result of linear phason strain variants along directions with equal probability. Electron diffraction and high-resolution electron imaging provide supportive evidence of this result.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).CrossRefGoogle ScholarPubMed
Du, X.H., Huang, J.C., Hsieh, K.C., Lai, Y.H., Chen, H.M., Jang, J.S.C., and Liaw, P.K.: Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl. Phys. Lett. 91, 131901 (2007).CrossRefGoogle Scholar
Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).CrossRefGoogle Scholar
Lee, M., Lee, C.M., Lee, K.R., Ma, E., and Lee, J.C.: Networked interpenetrating connections of icosahedra: Effects on shear transformations in metallic glass. Acta Mater. 59, 159 (2011).CrossRefGoogle Scholar
Cheng, Y.Q. and Ma, E.: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).CrossRefGoogle Scholar
Zhang, L., Cheng, Y.Q., Cao, A.J., Xu, J., and Ma, E.: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 1154 (2009).CrossRefGoogle Scholar
Tanaka, H.: Relationship among glass-forming ability, fragility and short-range bond ordering of liquids. J. Non-Cryst. Solids 351, 678 (2005).CrossRefGoogle Scholar
Hufnagel, T.C. and Brennan, S.: Short- and medium-range order in (Zr70Cu20Ni10)90-xTaxAl10 bulk amorphous alloys. Phys. Rev. B 67, 014203 (2003).CrossRefGoogle Scholar
Luo, W.K., Sheng, H.W., Alamgir, F.M., Bai, J.M., He, J.H., and Ma, E.: Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004).CrossRefGoogle ScholarPubMed
Saida, J., Matsushita, M., and Inoue, A.: Nano icosahedral quasicrystals in Zr-based glassy alloys. Intermetallics 10, 1089 (2002).CrossRefGoogle Scholar
Saida, J., Matsushita, M., and Inoue, A.: Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy. Appl. Phys. Lett. 79, 412 (2001).CrossRefGoogle Scholar
Zhu, Z.W., Gu, L., Xie, G.Q., Zhang, W., Inoue, A., Zhang, H.F., and Hu, Z.Q.: Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses. Acta Mater. 59, 2814 (2011).CrossRefGoogle Scholar
Ren, H.T., Pan, J., Chen, Q., Chan, K.C., Liu, Y., and Liu, L.: Enhancement of plasticity and toughness in monolithic Zr-based bulk metallic glass by heterogeneous microstructure. Scr. Mater. 64, 609 (2011).CrossRefGoogle Scholar
Sun, Y.F., Shek, C.H., Wei, B.C., Li, W.H., and Wang, Y.R.: Effect of Nb content on the microstructure and mechanical properties of Zr-Cu-Ni-Al-Nb glass forming alloys. J. Alloys Compd. 403, 239 (2005).CrossRefGoogle Scholar
Saida, J. and Inoue, A.: Effect of Mo addition on the formation of metastable fcc Zr2Ni and icosahedral phases in Zr-Al-Ni-Cu glassy alloy. Jpn. J. Appl. Phys. 40, L769 (2001).CrossRefGoogle Scholar
Saida, J. and Inoue, A.: Icosahedral quasicrystalline phase formation in Zr-Al-Ni-Cu glassy alloys by addition of Nb, Ta and V elements. J. Phys. Condens. Matter 13, L73 (2001).CrossRefGoogle Scholar
Fan, C. and Inoue, A.: Formation of nanoscale icosahedral quasicrystals and glass-forming ability in Zr-Nb-Ni-Cu-Al metallic glasses. Scr. Mater. 45, 115 (2001).CrossRefGoogle Scholar
Fan, C., Li, C.F., Inoue, A., and Haas, V.: Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr-Ni-Cu-Al metallic glasses. Appl. Phys. Lett. 79, 1024 (2001).CrossRefGoogle Scholar
Bancel, P.A. and Heiney, P.A.: Icosahedral alloys: Phase purity and phason strains. J. Phys. Colloques 47, C3-341 (1986).CrossRefGoogle Scholar
Lubensky, T.C., Socolar, J.E.S., Steinhardt, P.J., Bancel, P.A., and Heiney, P.A.: Distortion and peak broadening in quasicrystal diffraction patterns. Phys. Rev. Lett. 57, 1440 (1986).CrossRefGoogle ScholarPubMed
Horn, P.M., Malzfeldt, W., DiVincenzo, D.P., Toner, J., and Gambino, R.: Systematics of disorder in quasiperiodic material. Phys. Rev. Lett. 57, 1444 (1986).CrossRefGoogle ScholarPubMed
Socolar, J.E.S. and Wright, D.C.: Explanation of peak shapes observed in diffraction from icosahedral quasicrystals. Phys. Rev. Lett. 59, 221 (1987).CrossRefGoogle ScholarPubMed
Lubensky, T.C., Ramaswamy, S., and Toner, J.: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444 (1985).CrossRefGoogle ScholarPubMed
Levine, D., Lubensky, T.C., Ostlund, S., Ramaswamy, S., Steinhardt, P.J., and Toner, J.: Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520 (1985).CrossRefGoogle ScholarPubMed
Heiney, P.A., Bancel, P.A., Horn, P.M., Jordan, J.L., Laplaca, S., Angilello, J., and Gayle, F.W.: Disorder in Al-Li-Cu and Al-Mn-Si icosahedral alloys. Science 238, 660 (1987).CrossRefGoogle ScholarPubMed
Li, F.H., Pan, G.Z., Tao, S.Z., Hui, M.J., Mai, Z.H., Chen, X.S., and Cai, L.Y.: From quasicrystals to ordinary crystals. Philos. Mag. B 59, 535 (1989).CrossRefGoogle Scholar
Franz, V., Feuerbacher, M., Wollgarten, M., and Urban, K.: Electron diffraction analysis of plastically deformed icosahedral Al-Pd-Mn single quasicrystals. Philos. Mag. Lett. 79, 333 (1999).CrossRefGoogle Scholar
Huang, Z.R., Li, F.H., Teng, C.M., Pan, G.Z., and Chen, X.S.: Imperfection of and phase transformation in Al-Cu-Mg quasicrystals. J. Phys. Condens. Matter 3, 2231 (1991).CrossRefGoogle Scholar
Zhao, D.S., Tang, Y.L., Luo, Z.P., Wang, R.H., Shen, N.F., and Zhang, S.Q.: A Mg-Zn-Y-Zr icosahedral quasi-crystal containing linear phason strain. J. Phys. Condens. Matter 6, 7329 (1994).CrossRefGoogle Scholar
Zhang, H. and Kuo, K.H.: Transformation of the two-dimensional decagonal quasicrystal to one-dimensional quasicrystals: A phason strain analysis. Phys. Rev. B 41, 3482 (1990).CrossRefGoogle ScholarPubMed
Liao, X.Z., Kuo, K.H., Zhang, H., and Urban, K.: A new orthorhombic phase in Al-Cu-Co representing a rational approximant to the decagonal quasicrystalline phase. Philos. Mag. B 66, 549 (1992).CrossRefGoogle Scholar
Li, X.Z. and Kuo, K.H.: Transformation of Al-Ni-(Si) decagonal quasicrystals to 1-D quasicrystal and crystalline approximants. J. Mater. Res. 8, 2499 (1993).CrossRefGoogle Scholar
Zhang, H., Li, X.Z., and Kuo, K.H.: Continuous transformation of Al-Mn-Si and Al-Cr-Si decagonal quasicrystals to a new approximant, in Crystal-Quasicrystal Transitions, edited by Yacaman, M.J. and Torres, T. (Elsevier Science Publishers, Amsterdam, The Netherlands, 1993) p. 1.Google ScholarPubMed
Tanaka, M., Terauchi, M., Hiraga, K., and Hirabayashi, M.: Convergent-beam and small-area-parallel-beam electron diffraction of icosahedral quasicrystals of a melt-quenched Al-Mn alloy. Ultramicroscopy 17, 279 (1985).CrossRefGoogle Scholar
Cahn, J.W., Shechtman, D., and Gratias, D.: Indexing of icosahedral quasiperiodic crystals. J. Mater. Res. 1, 13 (1986).CrossRefGoogle Scholar
Elser, V.: Indexing problems in quasicrystal diffraction. Phys. Rev. B 32, 4892 (1985).CrossRefGoogle ScholarPubMed
Takakura, H., Gómez, C.P., Yamamoto, A., De Boissieu, M., and Tsai, A.P.: Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nat. Mater. 6, 58 (2007).CrossRefGoogle ScholarPubMed
Li, F.H., Pan, G.Z., Huang, D.X., Hashimoto, H., and Yokota, Y.: Phason-strain identification for quasicrystals by high-resolution electron microscopy. Ultramicroscopy 45, 299 (1992).CrossRefGoogle Scholar
Zou, X.D., Fung, K.K., and Kuo, K.H.: Orientation relationship of decagonal quasicrystal and tenfold twins in rapidly cooled Al-Fe alloy. Phys. Rev. B 35, 4526 (1987).CrossRefGoogle ScholarPubMed
Bancel, P.A.: Dynamical phasons in a perfect quasicrystal. Phys. Rev. Lett. 63, 2741 (1989).CrossRefGoogle Scholar
Yang, X.X., Wang, R.H., Takahashi, H., and Ohnuki, S.: TEM study of crystalline microtwins and icosahedral quasicrystals coexisting in Al62Cu25.5Fe12.5 alloy. Phys. Stat. Sol. 152A, 341 (1995).CrossRefGoogle Scholar
Landau, L.D. and Lifshitz, E.M.: Statistical Physics, 3rd ed. (Butterworth-Heinemann, Oxford, 1980).Google Scholar
Hu, C.Z., Wang, R.H., Ding, D.H., and Yang, W.G.: Structural transitions in octagonal, decagonal, and dodecagonal quasicrystals. Phys. Rev. B 53, 12031 (1996).CrossRefGoogle ScholarPubMed
Hu, C.Z., Wang, R.H., and Ding, D.H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 1 (2000).CrossRefGoogle Scholar
Ishii, Y.: Mode locking in quasicrystals. Phys. Rev. B 39, 11862 (1989).CrossRefGoogle ScholarPubMed
Ishii, Y.: Phason softening and structural transitions in icosahedral quasicrystals. Phys. Rev. B 45, 5228 (1992).CrossRefGoogle ScholarPubMed
Mai, Z.H., Xu, L., Wang, N., Kuo, K.H., Jin, Z.C., and Cheng, G.: Effect of phason strain on the transition of an octagonal quasicrystal to a β-Mn-type structure. Phys. Rev. B 40, 12183 (1989).CrossRefGoogle ScholarPubMed
Zhang, Z. and Kuo, K.H.: Local translational order in the NiTi2 icosahedral quasicrystal. J. Microsc. 146, 313 (1987).CrossRefGoogle Scholar
Zhou, D.S., Li, D.X., Ye, H.Q., and Kuo, K.H.: Local translational order in the icosahedral quasicrystalline phase of V41Ni36Si23. Philos. Mag. Lett. 56, 209 (1987).CrossRefGoogle Scholar
Wu, X.L., Liao, X.Z., Srinivasan, S.G., Zhou, F., Lavernia, E.J., Valiev, R.Z., and Zhu, Y.T.: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100, 095701 (2008).CrossRefGoogle ScholarPubMed
Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, Cambridge, 1998).Google Scholar
Wollgarten, M., Beyss, M., Urban, K., Liebertz, H., and Köster, U.: Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Phys. Rev. Lett. 71, 549 (1993).CrossRefGoogle ScholarPubMed
Rosefeld, R., Feuerbacher, M., Baufeld, B., Bartsch, M., Wollgarten, M., Hanke, G., Beyss, M., Messerschmidt, U., and Urban, K.: Study of plastically deformed icosahedral Al-Pd-Mn single quasicrystals by transmission electron microscopy. Philos. Mag. Lett. 72, 375 (1995).CrossRefGoogle Scholar
Bresson, L. and Gratias, D.: Plastic deformation in AlCuFe icosahedral phase. J. Non-Cryst. Solids 153154, 468 (1993).CrossRefGoogle Scholar
Wang, J.B., Ma, J., Lu, L., Xiong, D., Zhao, D.S., and Wang, R.H.: Plastic deformation of fine-grained Al-Cu-Fe-(B) icosahedral poly-quasicrystal at elevated temperature. Chin. Phys. Lett. 24, 2331 (2007).Google Scholar