Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T20:24:59.006Z Has data issue: false hasContentIssue false

Waveguide formation of KTiOPO4 by multienergy MeV He+ implantation

Published online by Cambridge University Press:  31 January 2011

Ke-Ming Wang
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, China
Bo-Rong Shi
Affiliation:
Department of Physics, Shandong University, Jinan 250100, Shandong, China
Pei-Jun Ding
Affiliation:
Department of Physics, University at Albany, Albany, New York 12222
Wei Wang
Affiliation:
Department of Physics, University at Albany, Albany, New York 12222
W. A. Lanford
Affiliation:
Department of Physics, University at Albany, Albany, New York 12222
Zhuang Zhuo
Affiliation:
Institute of Crystal Material, Shandong University, Jinan 250100, Shandong, China
Yao-Gang Liu
Affiliation:
Institute of Crystal Material, Shandong University, Jinan 250100, Shandong, China
Get access

Abstract

X-cut potassium titanyl phosphate (KTiOPO4 or KTP) was implanted by multienergy MeV He+ implantation with a total dose of 2 × 1016 ions/cm2 at liquid nitrogen temperature. The energy and dose used are as follows: 3.3 MeV and 2 × 1015 ions/cm2, 3.2 MeV and 4 × 1015 ions/cm2, 3.1 MeV and 4 × 1015 ions/cm2, and 3.0 MeV and 1.0 × 1016 ions/cm2 to reduce tunneling effect. The 22 dark modes were measured by the isosceles prism coupling method. The 15 bright modes were observed after 250 °C, 60 min annealing. The result shows that the waveguide formation of KTiOPO4 implanted by MeV He+ is not strongly dependent on the cut direction, which is different from the waveguide formation of KTiOPO4 by ion exchange process.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Liu, Y. S., Dentz, D., and Belt, R., Opt. Lett. 9, 76 (1984).CrossRefGoogle Scholar
2.Zumsteg, , Bierlein, J. D., and Gier, T. E., J. Appl. Phys. 47, 4980 (1976).CrossRefGoogle Scholar
3.Bierlein, J. D., Ferretti, A., Brixner, L. H., and Hsu, W. Y., Appl. Phys. Lett. 50, 1216 (1987).CrossRefGoogle Scholar
4.Bierlein, J. D. and Vanherzeele, H., J. Opt. Soc. Am. B 6, 622 (1989).CrossRefGoogle Scholar
5.Stucky, G. D., Phillips, M. L. F., and Gier, T. E., Chem. Mater. 1, 492 (1989).CrossRefGoogle Scholar
6.Risk, W. P., Appl. Phys. Lett. 58, 19 (1991).CrossRefGoogle Scholar
7.Jongerius, M. J., Drenten, R. R., and Droste, R. B. J., Philips J. Res. 46, 231 (1992).Google Scholar
8.Townsend, P. D., Nucl. Instrum. Methods B 46, 18 (1990).CrossRefGoogle Scholar
9.Zhang, L., Chandler, P.J., Townsend, P.D., and Thomas, P.A., Electron. Lett. 28, 650 (1992).CrossRefGoogle Scholar
10.Zhang, L., Chandler, P. J., Townsend, P.D., Alwahabi, Z. T., and McCaffery, A. J., Electron. Lett. 28, 1478 (1992).CrossRefGoogle Scholar
11.Weiss, B. L. and Ahmad, C. N., Nucl. Instrum. Methods B 30, 51 (1969).CrossRefGoogle Scholar
12.Tien, P. K., Ulrich, R., and Martin, R. J., Appl. Phys. Lett. 14, 291 (1969).CrossRefGoogle Scholar
13.Chandler, P. J. and Lama, F.L., Opt. Acta 33, 127 (1986).CrossRefGoogle Scholar
14.White, J. M. and Heidrich, P. F., Appl. Opt. 15, 151 (1976).CrossRefGoogle Scholar
15.Zhuo, Z., He, M., Chen, J., Mu, X., Shao, Z., and Chen, X., J. Synthetic Crystal. (in Chinese) 23, 88 (1994).Google Scholar
16.Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
17.Chandler, P. J., Zhang, L., and Townsend, P.D., Nucl. Instrum. Methods B 46, 69 (1990).CrossRefGoogle Scholar