Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T22:58:28.808Z Has data issue: false hasContentIssue false

Wavelength Dependence of Crystallization of Alkoxy-Derived ZrO2 Thin Films Prepared by Ultraviolet Irradiation

Published online by Cambridge University Press:  03 March 2011

Kaori Nishizawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Moriyama-ku, Nagoya 463-8560, Japan
Takeshi Miki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Moriyama-ku, Nagoya 463-8560, Japan
Kazuyuki Suzuki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Moriyama-ku, Nagoya 463-8560, Japan
Kazumi Kato
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Moriyama-ku, Nagoya 463-8560, Japan
Get access

Abstract

Wavelength dependence was observed in the ultraviolet (UV) irradiation-assisted crystallization of alkoxy-derived ZrO2 thin films. The surface grains of thin films deposited on Si(100) substrates became enlarged by UV irradiation using an ultrahigh-pressure mercury lamp. The crystallinity of thin films deposited on Si(100) substrates was improved by UV irradiation using a low-pressure mercury lamp. The reaction using the ultrahigh-pressure mercury lamp depended on the substrate type.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Chang, J.P. and Lin, Y-S.: Dielectric property and conduction mechanism of ultrathin zirconium oxide films. Appl. Phys. Lett. 79, 3666 (2001).CrossRefGoogle Scholar
2Cho, B-O., Wang, J., Sha, L. and Chang, J.P.: Tuning the electrical properties of zirconium oxide thin films. Appl. Phys. Lett. 80, 1052 (2002).CrossRefGoogle Scholar
3Robertson, J.: Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18, 1785 (2000).Google Scholar
4Kralik, B., Vhang, E.K. and Louie, S.G.: Structural properties and quasiparticle band structure of zirconia. Phys. Rev. B 57, 7027 (1998).Google Scholar
5Kim, D-Y., Lee, C-H. and Park, S.J.: Preparation of zirconia thin films by metalorganic chemical vapor deposition using ultrasonic nebulization. J. Mater. Res. 11, 2583 (1996).Google Scholar
6Jeon, T.S., White, J.M. and Kwong, D.L.: Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100). Appl. Phys. Lett. 78, 368 (2001).CrossRefGoogle Scholar
7Copel, M., Gribelyuk, M. and Gusev, E.: Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl. Phys. Lett. 76, 436 (2000).Google Scholar
8Hubbard, K.J. and Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11, 2757 (1996).Google Scholar
9Komatsu, Y., Sato, T., Ito, S. and Akashi, K.: Preparation of YBCO/ZrO2 thin films on Si by MOCVD using a mode converting type of microwave plasma apparatus. Thin Solid Films 341, 132 (1999).CrossRefGoogle Scholar
10Choi, H.S., Kim, E.H., Choi, I-H., Kim, Y.T., Choi, J.H. and Lee, J.Y.: The effect of ZrO2 buffer layer on electrical properties in Pt/SrBi2Ta2O9/ZrO2/Si ferroelectric gate oxide structure. Thin Solid Films 388, 226 (2001).Google Scholar
11Tan, G-L. and Wu, X-J.: Electronic conductivity of a ZrO2 thin film as an oxygen sensor. Thin Solid Films 330, 59 (1998).Google Scholar
12Zhao, Z.W., Tay, B.K., Huang, L. and Yu, G.Q.: Study of the structure and optical properties of nanocrystalline zirconium oxide thin films deposited at low temperatures. J. Phys. D, Appl. Phys. 37, 1701 (2004).CrossRefGoogle Scholar
13Ciosek, J., Paszkowicz, W., Pankowski, P., Firak, J., Stanislawek, U. and Patron, Z.: Modification of zirconium oxide film microstructure during post-deposition annealing. Vacuum 72, 135 (2004).Google Scholar
14Qi, H.J., Huang, L.H., Tang, Z.S., Cheng, C.F., Shao, J.D. and Fan, Z.X.: Roughness evolution of ZrO2 thin films grown by reactive ion beam sputtering. Thin Solid Films 444, 146 (2003).CrossRefGoogle Scholar
15Li, H., Liang, K., Gu, S. and Xiao, G.: Oriented nano-structured ZrO2 thin films on fused quartz substrate by sol-gel process. J. Mater. Sci. Lett. 20, 1301 (2001).Google Scholar
16Bae, S-Y., Choi, H-S., Choi, S-Y. and Oh, Y-J.: Sol-gel processing for epitaxial growth of ZrO2 thin films on Si(100) wafers. Ceram. Int. 26, 213 (2000).Google Scholar
17Niederwald, H., Laux, S., Kennedy, M., Schallenberg, U., Duparre, A., Mertin, M., Kaiser, N. and Ristau, D.: Ion-assisted deposition of oxide materials at room temperature by use of different ion sources. Appl. Opt. 38, 3610 (1999).Google Scholar
18Yamamura, H., Iwata, Y. and Matsuno, C.: Synthesis of highly oriented zirconia film by sol-gel method. J. Ceram. Soc. Jpn. 105, 918 (1997).Google Scholar
19Harada, K., Nakanishi, H., Itozaki, H. and Yazu, S.: Growth of buffer layers on Si substrate for high-Tc superconducting thin films. Jpn. J. Appl. Phys. 30, 934 (1991).Google Scholar
20Yu, J.J., Zhang, J-Y. and Boyd, I.W.: Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing. Appl. Surf. Sci. 186, 190 (2002).Google Scholar
21Yu, J.J. and Boyd, I.W.: Structural and electrical characteristics of zirconium oxide layers derived by photo-assisted sol-gel processing. Appl. Phys. A 74, 143 (2002).Google Scholar
22Watanabe, A., Tsuchiya, T. and Imai, Y.: Crystal structure of zirconium oxide deposoted as thin films from Zr-acetylacetonate and Zr-ter-butoxide by laser chemical vapor deposition technique. Jpn. J. Appl. Phys. 40, 4051 (2001).Google Scholar
23Hayashi, T., Iizawa, N., Togawa, D., Yamada, M., Sakamoto, W., Kikuta, K. and Hirano, S.: Excimer UV Processing of (Bi,Nd)4Ti3O12 ferroelectric thin films by chemical solution deposition method. Jpn. J. Appl. Phys. 42, 5981 (2003).CrossRefGoogle Scholar
24Asakuma, N., Fukui, T., Toki, M., Awazu, K. and Imai, H.: Photoinduced hydroxylation at ZnO surface. Thin Solid Films 445, 284 (2003).Google Scholar
25Sato, K., Kikuta, K., Iwamoto, Y. and Hirano, S.: Effect of UV irradiation on processing of lead titanate thin film derived from photoreactive [Pb–Ti] precursor modified with alkanolamine. J. Ceram. Soc. Jpn. 108, 998 2000 , in Japanese.Google Scholar
26Nishizawa, K., Miki, T., Suzuki, K. and Kato, K.: Novel chemical processing for crystallization of SrBi2Ta2O9 thin films via UV irradiation. Mater. Lett. 52, 20 (2002).Google Scholar
27Nishizawa, K., Miki, T., Suzuki, K. and Kato, K.: Control of crystallization and crystal orientation of alkoxy-derived SrBi2Ta2O9 thin films by ultraviolet irradiation. J. Mater. Res. 18, 899 (2003).Google Scholar
28Houssa, M., Tuominen, M., Naili, M., Afanas’ev, V., Stesmans, A., Haukka, S. and Heyns, M.M.: Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615 (2000).Google Scholar
29Lenzmann, F., Shklover, V., Brooks, K. and Gratzel, M.: Mesoporous Nb2O5 films: Influence of degree of crystallinity on properties. J. Sol.-Gel. Sci. Technol. 19, 175 (2000).Google Scholar
30Afanas’ev, V.V., Houssa, M. and Stesmans, A.: Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators. Appl. Phys. Lett. 78, 3073 (2001).Google Scholar
31Houle, F.A.: Photoeffects on the fluorination of silicon. II. Kinetics of the initial response to light. J. Chem. Phys. 80, 15 (1984).Google Scholar
32Ying, Z. and Ho, W.: Photogenerated-charge-carrier-induced surface reaction: NO on Si (111)7X7. Phys. Rev. Lett. 60, 57 (1987).Google Scholar