Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T19:37:07.217Z Has data issue: false hasContentIssue false

With great structure comes great functionality: Understanding and emulating spider silk

Published online by Cambridge University Press:  18 December 2014

Cameron P. Brown*
Affiliation:
Botnar Research Centre, University of Oxford, UK
Alessandra D. Whaite
Affiliation:
Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Australia
Jennifer M. MacLeod
Affiliation:
INRS – Centre Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
Joanne Macdonald
Affiliation:
Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Australia; and Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, USA
Federico Rosei*
Affiliation:
INRS – Centre Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada; and Center for Self-Assembled Chemical Structures, McGill University, H3A 2K6 Montreal, Quebec, Canada
*
a) Address all correspondence to these authors. e-mail: cameron.brown@ndorms.ox.ac.uk
b) e-mail: rosei@emt.inrs.ca
Get access

Abstract

The overarching aim of biomimetic approaches to materials synthesis is to mimic simultaneously the structure and function of a natural material, in such a way that these functional properties can be systematically tailored and optimized. In the case of synthetic spider silk fibers, to date functionalities have largely focused on mechanical properties. A rapidly expanding body of literature documents this work, building on the emerging knowledge of structure–function relationships in native spider silks, and the spinning processes used to create them. Here, we describe some of the benchmark achievements reported until now, with a focus on the last five years. Progress in protein synthesis, notably the expression on full-size spidroins, has driven substantial improvements in synthetic spider silk performance. Spinning technology, however, lags behind and is a major limiting factor in biomimetic production. We also discuss applications for synthetic silk that primarily capitalize on its nonmechanical attributes, and that exploit the remarkable range of structures that can be formed from a synthetic silk feedstock.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shear, W.A., Palmer, J.M., Coddington, J.A., and Bonamo, P.M.: A Devonian spinneret: Early evidence of spiders and silk use. Science 246, 479 (1989).CrossRefGoogle ScholarPubMed
Gosline, J.M., Guerette, P.A., Ortlepp, C.S., and Savage, K.N.: The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 (1999).CrossRefGoogle ScholarPubMed
Vollrath, F. and Knight, D.P.: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).CrossRefGoogle ScholarPubMed
Rising, A.: Controlled assembly: A prerequisite for the use of recombinant spider silk in regenerative medicine? Acta Biomater. 10, 1627 (2014).CrossRefGoogle ScholarPubMed
Slotta, U., Mougin, N., Römer, L., and Leimer, A.H.: Synthetic spider silk proteins and threads. Chem. Eng. Prog. 108, 43 (2012).Google Scholar
Humenik, M., Smith, A.M., and Scheibel, T.: Recombinant spider silks—Biopolymers with potential for future applications. Polymers 3, 640 (2011).CrossRefGoogle Scholar
Widhe, M., Johansson, J., Hedhammar, M., and Rising, A.: Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468 (2012).CrossRefGoogle ScholarPubMed
Tokareva, O., Jacobsen, M., Buehler, M., Wong, J., and Kaplan, D.L.: Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomater. 10, 1612 (2014).CrossRefGoogle ScholarPubMed
Tokareva, O., Michalczechen-Lacerda, V.A., Rech, E.L., and Kaplan, D.L.: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651 (2013).CrossRefGoogle ScholarPubMed
Widhe, M., Johansson, J., Hedhammar, M., and Rising, A.: Invited review: Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468 (2012).CrossRefGoogle ScholarPubMed
Bittencourt, D., Oliveira, P.F., Prosdocimi, F., and Rech, E.L.: Protein families, natural history and biotechnological aspects of spider silk. Genet. Mol. Res. 11, 2360 (2012).CrossRefGoogle ScholarPubMed
Tarakanova, A. and Buehler, M.J.: A materiomics approach to spider silk: Protein molecules to webs. JOM 64, 214 (2012).CrossRefGoogle Scholar
Yang, Y., Chen, X., Shao, Z., Zhou, P., Porter, D., Knight, D.P., and Vollrath, F.: Toughness of spider silk at high and low temperatures. Adv. Mat. 17, 84 (2005).CrossRefGoogle Scholar
Pogozelski, E.M., Becker, W.L., See, B.D., and Kieffer, C.M.: Mechanical testing of spider silk at cryogenic temperatures. Int. J. Biol. Macromol. 48, 27 (2011).CrossRefGoogle ScholarPubMed
Vollrath, F. and Porter, D.: Silks as ancient models for modern polymers. Polymer 50, 5623 (2009).CrossRefGoogle Scholar
Agnarsson, I., Kuntner, M., and Blackledge, T.A.: Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PLoS One 5, 1 (2010).CrossRefGoogle ScholarPubMed
Gregorič, M., Agnarsson, I., Blackledge, T.A., and Kuntner, M.: Darwin's bark spider: Giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae)? J. Arachnol. 39, 287 (2011).CrossRefGoogle Scholar
Agnarsson, I., Boutry, C., and Blackledge, T.A.: Spider silk aging: Initial improvement in a high performance material followed by slow degradation. J. Exp. Zool. A Ecol. Genet. Physiol. 309A, 494 (2008).CrossRefGoogle Scholar
Swanson, B.O., Blackledge, T.A., Summers, A.P., and Hayashi, C.Y.: Spider dragline silk: Correlated and mosaic evolution in high-performance biological materials. Evolution 60, 2539 (2006).CrossRefGoogle ScholarPubMed
Asrar, J. and Hill, J.C.: Biosynthetic processes for linear polymers. J. Appl. Polym. Sci. 83, 457 (2002).CrossRefGoogle Scholar
Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Tough, bio-inspired hybrid materials. Science 322, 1516 (2008).CrossRefGoogle ScholarPubMed
Brown, C.P., Harnagea, C., Gill, H.S., Price, A.J., Traversa, E., Licoccia, S., and Rosei, F.: Rough fibrils provide a toughening mechanism in biological fibers. ACS Nano 6, 1961 (2012).CrossRefGoogle ScholarPubMed
Keten, S. and Buehler, M.J.: Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743 (2008).CrossRefGoogle Scholar
Sponner, A., Vater, W., Monajembashi, S., Unger, E., Grosse, F., and Weisshart, K.: Composition and hierarchical organisation of a spider silk. PLoS One 2, e998 (2007).CrossRefGoogle ScholarPubMed
Koski, K.J., Akhenblit, P., McKiernan, K., and Yarger, J.L.: Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262 (2013).CrossRefGoogle ScholarPubMed
Xu, M. and Lewis, R.V.: Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. U. S. A. 87, 7120 (1990).CrossRefGoogle ScholarPubMed
Heim, M., Romer, L., and Scheibel, T.: Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem. Soc. Rev. 39, 156 (2010).CrossRefGoogle ScholarPubMed
Simmons, A.H., Michal, C.A., and Jelinski, L.W.: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84 (1996).CrossRefGoogle ScholarPubMed
Bonev, B., Grieve, S., Herberstein, M.E., Kishore, A.I., Watts, A., and Separovic, F.: Orientational order of Australian spider silks as determined by solid-state NMR. Biopolymers 82, 134 (2006).CrossRefGoogle ScholarPubMed
van Beek, J.D., Hess, S., Vollrath, F., and Meier, B.H.: The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. U. S. A. 99, 10266 (2002).CrossRefGoogle ScholarPubMed
Vollrath, F. and Porter, D.: Spider silk as archetypal protein elastomer. Soft Matter 2, 377 (2006).CrossRefGoogle Scholar
Liu, X.Y., Sponner, A., Porter, D., and Vollrath, F.: Proline and processing of spider silks. Biomacromolecules 9, 116 (2008).CrossRefGoogle ScholarPubMed
Savage, K.N. and Gosline, J.M.: The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 211, 1948 (2008).CrossRefGoogle ScholarPubMed
Savage, K.N. and Gosline, J.M.: The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. J. Exp. Biol. 211, 1937 (2008).CrossRefGoogle Scholar
Brown, C.P., MacLeod, J., Amenitsch, H., Cacho-Nerin, F., Gill, H.S., Price, A.J., Traversa, E., Licoccia, S., and Rosei, F.: The critical role of water in spider silk and its consequence for protein mechanics. Nanoscale 3, 3805 (2011).CrossRefGoogle ScholarPubMed
Guan, J., Porter, D., and Vollrath, F.: Silks cope with stress by tuning their mechanical properties under load. Polymer 53, 2717 (2012).CrossRefGoogle Scholar
Porter, D., Vollrath, F., and Shao, Z.: Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E: Soft Matter Biol. Phys. 16, 199 (2005).CrossRefGoogle Scholar
Mortimer, B., Gordon, S.D., Holland, C., Siviour, C.R., Vollrath, F., and Windmill, J.F.C.: The speed of sound in silk: Linking material performance to biological function. Adv. Mat. 26, 5179 (2014).CrossRefGoogle ScholarPubMed
Keten, S. and Buehler, M.J.: Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).CrossRefGoogle ScholarPubMed
Keten, S. and Buehler, M.J.: Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96, 153701 (2010).CrossRefGoogle Scholar
Keten, S., Xu, Z., Ihle, B., and Buehler, M.J.: Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9, 359 (2010).CrossRefGoogle ScholarPubMed
Qin, Z. and Buehler, M.J.: Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals. Phys. Rev. E 82, 061906 (2010).CrossRefGoogle ScholarPubMed
Keten, S. and Buehler, M.J.: Nanostructure and molecular mechanics of dragline spider silk protein assemblies. J. Roy. Soc. Interface 7, 1709 (2010).CrossRefGoogle ScholarPubMed
Patil, Sandeep P., Markert, B., and Gräter, F.: Rate-dependent behavior of the amorphous phase of spider dragline silk. Biophys. J. 106, 2511 (2014).CrossRefGoogle ScholarPubMed
Giesa, T., Arslan, M., Pugno, N.M., and Buehler, M.J.: Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 11, 5038 (2011).CrossRefGoogle ScholarPubMed
Cranford, S.W.: Increasing silk fibre strength through heterogeneity of bundled fibrils. J. R. Soc. Interface 10, 20130148 (2013).CrossRefGoogle ScholarPubMed
Xu, G., Gong, L., Yang, Z., and Liu, X.Y.: What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 10, 2116 (2014).CrossRefGoogle ScholarPubMed
Krishnaji, S.T., Bratzel, G., Kinahan, M.E., Kluge, J.A., Staii, C., Wong, J.Y., Buehler, M.J., and Kaplan, D.L.: Sequence–structure–property relationships of recombinant spider silk proteins: Integration of biopolymer design, processing, and modeling. Adv. Funct. Mater. 23, 241 (2013).CrossRefGoogle Scholar
Wong, J.Y., McDonald, J., Taylor-Pinney, M., Spivak, D.I., Kaplan, D.L., and Buehler, M.J.: Materials by design: Merging proteins and music. Nano Today 7, 488 (2012).CrossRefGoogle ScholarPubMed
Holland, C., Vollrath, F., Ryan, A.J., and Mykhaylyk, O.O.: Silk and synthetic polymers: Reconciling 100 degrees of separation. Adv. Mater. 24, 105 (2012).CrossRefGoogle ScholarPubMed
Vollrath, F., Porter, D., and Holland, C.: There are many more lessons still to be learned from spider silks. Soft Matter 7, 9595 (2011).CrossRefGoogle Scholar
Heidebrecht, A and Scheibel, T.: Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 82, 115 (2013).Google Scholar
Ayoub, N.A., Garb, J.E., Kuelbs, A., and Hayashi, C.Y.: Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol. Biol. Evol. 30, 589 (2013).CrossRefGoogle ScholarPubMed
Chinali, A., Vater, W., Rudakoff, B., Sponner, A., Unger, E., Grosse, F., Guehrs, K.H., and Weisshart, K.: Containment of extended length polymorphisms in silk proteins. J. Mol. Evol. 70, 325 (2010).CrossRefGoogle ScholarPubMed
Ayoub, N.A., Garb, J.E., Tinghitella, R.M., Collin, M.A., and Hayashi, C.Y.: Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes. PLoS One 2, e514 (2007).CrossRefGoogle ScholarPubMed
Zhang, Y., Zhao, A.C., Sima, Y.H., Lu, C., Xiang, Z.H., and Nakagaki, M.: The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: A second blueprint for synthesizing de novo silk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 164, 151 (2013).CrossRefGoogle ScholarPubMed
Sanggaard, K.W., Bechsgaard, J.S., Fang, X., Duan, J., Dyrlund, T.F., Gupta, V., Jiang, X., Cheng, L., Fan, D., Feng, Y., Han, L., Huang, Z., Wu, Z., Liao, L., Settepani, V., Thogersen, I.B., Vanthournout, B., Wang, T., Zhu, Y., Funch, P., Enghild, J.J., Schauser, L., Andersen, S.U., Villesen, P., Schierup, M.H., Bilde, T., and Wang, J.: Spider genomes provide insight into composition and evolution of venom and silk. Nat. Commun. 5, 3765 (2014).CrossRefGoogle ScholarPubMed
Tai, P.L., Hwang, G.Y., and Tso, I.M.: Inter-specific sequence conservation and intra-individual sequence variation in a spider silk gene. Int. J. Biol. Macromol. 34, 295 (2004).CrossRefGoogle Scholar
Beckwitt, R. and Arcidiacono, S.: Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (tetragnathidae) and Araneus bicentenarius (Araneidae). J. Biol. Chem. 269, 6661 (1994).CrossRefGoogle ScholarPubMed
Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., and Knight, S.D.: Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236 (2010).CrossRefGoogle ScholarPubMed
Gronau, G., Qin, Z., and Buehler, M.J.: Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain. Biomater. Sci. 1, 276 (2013).CrossRefGoogle ScholarPubMed
Hagn, F., Eisoldt, L., Hardy, J.G., Vendrely, C., Coles, M., Scheibel, T., and Kessler, H.: A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239 (2010).CrossRefGoogle ScholarPubMed
Prosdocimi, F., Bittencourt, D., da Silva, F.R., Kirst, M., Motta, P.C., and Rech, E.L.: Spinning gland transcriptomics from two main clades of spiders (order: Araneae)—Insights on their molecular, anatomical and behavioral evolution. PLoS One 6, e21634 (2011).CrossRefGoogle ScholarPubMed
Clarke, T.H., Garb, J.E., Hayashi, C.Y., Haney, R.A., Lancaster, A.K., Corbett, S., and Ayoub, N.A.: Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15, 365 (2014).CrossRefGoogle ScholarPubMed
Foelix, R.F.: The Biology of Spiders (Oxford University Press, New York, 1996). p. 336.Google Scholar
Lefèvre, T., Boudreault, S., Cloutier, C., and Pézolet, M.: Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405, 238 (2011).CrossRefGoogle ScholarPubMed
Knight, D. and Vollrath, F.: Hexagonal columnar liquid crystal in the cells secreting spider silk. Tissue Cell 31, 617 (1999).CrossRefGoogle ScholarPubMed
Hijirida, D.H., Do, K.G., Michal, C., Wong, S., Zax, D., and Jelinski, L.W.: 13C NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442 (1996).CrossRefGoogle ScholarPubMed
Jin, H.J. and Kaplan, D.L.: Mechanism of silk processing in insects and spiders. Nature 424, 1057 (2003).CrossRefGoogle ScholarPubMed
Rammensee, S., Slotta, U., Scheibel, T., and Bausch, A.R.: Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. U. S. A. 105, 6590 (2008).CrossRefGoogle ScholarPubMed
Vollrath, F., Hawkins, N., Porter, D., Holland, C., and Boulet-Audet, M.: Differential scanning fluorimetry provides high throughput data on silk protein transitions. Sci. Rep. 4, 5625 (2014).CrossRefGoogle ScholarPubMed
Hardy, J.G., Römer, L.M., and Scheibel, T.R.: Polymeric materials based on silk proteins. Polymer 49, 4309 (2008).CrossRefGoogle Scholar
Vollrath, F. and Knight, D.P.: Structure and function of the silk production pathway in the spider Nephila edulis. Int. J Biol. Macromol. 24, 243 (1999).CrossRefGoogle ScholarPubMed
Leclerc, J., Lefèvre, T., Gauthier, M., Gagné, S.M., and Auger, M.: Hydrodynamical properties of recombinant spider silk proteins: Effects of pH, salts and shear, and implications for the spinning process. Biopolymers 99, 582 (2013).CrossRefGoogle ScholarPubMed
Kovoor, J. and Munoz-Cuevas, A.: Structure and function of the silk-gland system in Oxyopidae (Araneae). In Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997, 1998; p. 133.Google Scholar
Garrido, M.A., Elices, M., Viney, C., and Pérez-Rigueiro, J.: Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces. Polymer 43, 1537 (2002).CrossRefGoogle Scholar
Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163 (1921).Google Scholar
Teulé, F., Cooper, A.R., Furin, W.A., Bittencourt, D., Rech, E.L., Brooks, A., and Lewis, R.V.: A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341 (2009).CrossRefGoogle ScholarPubMed
Menassa, R., Zhu, H., Karatzas, C.N., Lazaris, A., Richman, A., and Brandle, J.: Spider dragline silk proteins in transgenic tobacco leaves: Accumulation and field production. Plant Biotechnol. J. 2, 431 (2004).CrossRefGoogle ScholarPubMed
Fahnestock, S.R. and Bedzyk, L.A.: Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol. 47, 33 (1997).CrossRefGoogle ScholarPubMed
Teulé, F., Miao, Y-G., Sohn, B-H., Kim, Y-S., Hull, J.J., Fraser, M.J., Lewis, R.V., and Jarvis, D.L.: Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. U.S.A. 109, 923 (2012).CrossRefGoogle ScholarPubMed
Steinkraus, H.B., Rothfuss, H., Jones, J.A., Dissen, E., Shefferly, E., and Lewis, R.V.: The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring. J. Anim. Sci. 90, 481 (2012).CrossRefGoogle ScholarPubMed
Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J-F., Duguay, F., Chretien, N., Welsh, E.A., Soares, J.W., and Karatzas, C.N.: Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472 (2002).CrossRefGoogle ScholarPubMed
Leclerc, J., Lefèvre, T., Pottier, F., Morency, L.P., Lapointe-Verreault, C., Gagné, S.M., and Auger, M.: Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution. Biopolymers 97, 337 (2012).CrossRefGoogle ScholarPubMed
Xia, X-X., Qian, Z-G., Ki, C.S., Park, Y.H., Kaplan, D.L., and Lee, S.Y.: Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. U. S. A. 107, 14059 (2010).CrossRefGoogle Scholar
Fahnestock, S.R., Yao, Z., and Bedzyk, L.A.: Microbial production of spider silk proteins. Rev. Mol. Biotechnol. 74, 105 (2000).CrossRefGoogle ScholarPubMed
Widmaier, D.M., Tullman‐Ercek, D., Mirsky, E.A., Hill, R., Govindarajan, S., Minshull, J., and Voigt, C.A.: Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 308 (2009).CrossRefGoogle ScholarPubMed
Widmaier, D.M. and Voigt, C.A.: Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb. Cell Fact. 9, 78 (2010).CrossRefGoogle ScholarPubMed
Goncalves, A.M., Pedro, A.Q., Maia, C., Sousa, F., Queiroz, J.A., and Passarinha, L.A.: Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. J. Microbiol. Biotechnol. 23, 587 (2013).CrossRefGoogle ScholarPubMed
Hauptmann, V., Weichert, N., Rakhimova, M., and Conrad, U.: Spider silks from plants—A challenge to create native-sized spidroins. Biotechnol. J. 8, 1183 (2013).CrossRefGoogle ScholarPubMed
Grip, S., Rising, A., Nimmervoll, H., Storckenfeldt, E., Mcqueen-Mason, S.J., Pouchkina-Stantcheva, N., Vollrath, F., Engström, W., and Fernandez-Arias, A.: Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genom. Proteom. 3, 83 (2006).Google Scholar
Weichert, N., Hauptmann, V., Menzel, M., Schallau, K., Gunkel, P., Hertel, T.C., Pietzsch, M., Spohn, U., and Conrad, U.: Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol. J. 12, 265 (2014).CrossRefGoogle ScholarPubMed
Xu, H-T., Fan, B-L., Yu, S-Y., Huang, Y-H., Zhao, Z-H., Lian, Z-X., Dai, Y-P., Wang, L-L., Liu, Z-L., Fei, J., and Li, N.: Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Ani. Biotechnol. 18, 1 (2007).CrossRefGoogle ScholarPubMed
Elices, M., Guinea, G.V., Plaza, G.R., Karatzas, C., Riekel, C., Agulló-Rueda, F., Daza, R., and Pérez-Rigueiro, J.: Bioinspired fibers follow the track of natural spider silk. Macromolecules 44, 1166 (2011).CrossRefGoogle Scholar
Zhang, Y., Hu, J., Miao, Y., Zhao, A., Zhao, T., Wu, D., Liang, L., Miikura, A., Shiomi, K., Kajiura, Z., and Nakagaki, M.: Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol. Biol. Rep. 35, 329 (2008).CrossRefGoogle ScholarPubMed
Schacht, K. and Scheibel, T.: Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr. Opin. Biotechnol. 29, 62 (2014).CrossRefGoogle ScholarPubMed
Domachuk, P., Tsioris, K., Omenetto, F.G., and Kaplan, D.L.: Bio-microfluidics: Biomaterials and biomimetic designs. Adv. Mater. 22, 249 (2010).CrossRefGoogle ScholarPubMed
Daniel, H. and Thomas, S.: Method and device for producing a thread from silk proteins. U.S. Patent No. 7,868,146. 11 January 2011.Google Scholar
Knight, D.P. and Pinnock, L.: Method and apparatus for forming objects. WO Patent App. PCT/EP2003/014,787. 8 July 2004.Google Scholar
Kinahan, M.E., Filippidi, E., Köster, S., Hu, X., Evans, H.M., Pfohl, T., Kaplan, D.L., and Wong, J.: Tunable silk: Using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12, 1504 (2011).CrossRefGoogle ScholarPubMed
Luo, J., Zhang, L., Peng, Q., Sun, M., Zhang, Y., Shao, H., and Hu, X.: Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int. J Biol. Macromol. 66, 319 (2014).CrossRefGoogle ScholarPubMed
Davies, G.J.G., Knight, D.P., and Vollrath, F.: Structure and function of the major ampullate spinning duct of the golden orb weaver, Nephila edulis. Tissue Cell 45, 306 (2013).CrossRefGoogle ScholarPubMed
Renberg, B., Andersson-Svahn, H., and Hedhammar, M.: Mimicking silk spinning in a microchip. Sens. Actuators B 195, 404 (2014).CrossRefGoogle Scholar
Holland, C., Terry, A.E., Porter, D., and Vollrath, F.: Natural and unnatural silks. Polymer 48, 3388 (2007).CrossRefGoogle Scholar
Chen, X., Knight, D.P., and Vollrath, F.: Rheological characterization of Nephila spidroin solution. Biomacromolecules 3, 644 (2002).CrossRefGoogle ScholarPubMed
Vollrath, F., Knight, D.P., and Hu, X.W.: Silk production in a spider involves acid bath treatment. Phil. Trans. R. Soc. B 265, 817 (1998).Google Scholar
Shao, Z., Vollrath, F., Yang, Y., and Thøgersen, H.C.: Structure and behavior of regenerated spider silk. Macromolecules 36, 1157 (2003).CrossRefGoogle Scholar
Seidel, A., Liivak, O., Calve, S., Adaska, J., Ji, G., Yang, Z., Grubb, D., Zax, D.B., and Jelinski, L.W.: Regenerated spider silk: Processing, properties, and structure. Macromolecules 33, 775 (2000).CrossRefGoogle Scholar
Inoue, S., Tanaka, K., Arisaka, F., Kimura, S., Ohtomo, K., and Mizuno, S.: Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 275, 40517 (2000).CrossRefGoogle Scholar
Breslauer, D.N., Lee, L.P., and Muller, S.J.: Simulation of flow in the silk gland. Biomacromolecules 10, 49 (2008).CrossRefGoogle Scholar
Porter, D., Guan, J., and Vollrath, F.: Spider silk: Super material or thin fibre? Adv. Mater. 25, 1275 (2013).CrossRefGoogle ScholarPubMed
Huang, Z., Lu, Y., Majithia, R., Shah, J., Meissner, K., Matthews, K.S., Bondos, S.E., and Lou, J.: Size dictates mechanical properties for protein fibers self-assembled by the Drosophila hox transcription factor ultrabithorax. Biomacromolecules 11, 3644 (2010).CrossRefGoogle ScholarPubMed
Smook, J., Hamersma, W., and Pennings, A.J.: The fracture process of ultra-high strength polyethylene fibres. J. Mat. Sci. 19, 1359 (1984).CrossRefGoogle Scholar
Amornsakchai, T., Cansfield, D., Jawad, S., Pollard, G., and Ward, I.: The relation between filament diameter and fracture strength for ultra-high-modulus polyethylene fibres. J. Mat. Sci. 28, 1689 (1993).CrossRefGoogle Scholar
Wagner, H.D.: Dependence of fracture stress upon diameter in strong polymeric fibers. J. Macromol. Sci. Phys. 28, 339 (1989).CrossRefGoogle Scholar
Wagner, H.: Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. Part B Polym. Phys. 27, 115 (1989).CrossRefGoogle Scholar
Chae, H.G., Choi, Y.H., Minus, M.L., and Kumar, S.: Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Composites Sci. Technol. 69, 406 (2009).CrossRefGoogle Scholar
Ji, Y., Li, B., Ge, S., Sokolov, J.C., and Rafailovich, M.H.: Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22, 1321 (2006).CrossRefGoogle ScholarPubMed
Young, K., Blighe, F.M., Vilatela, J.J., Windle, A.H., Kinloch, I.A., Deng, L., Young, R.J., and Coleman, J.N.: Strong dependence of mechanical properties on fiber diameter for polymer–nanotube composite fibers: Differentiating defect from orientation effects. ACS Nano 4, 6989 (2010).CrossRefGoogle ScholarPubMed
Mackenzie, D.: The history of sutures. Med. Hist. 17, 158 (1973).CrossRefGoogle ScholarPubMed
Gellynck, K., Verdonk, P., Forsyth, R., Almqvist, K.F., Van Nimmen, E., Gheysens, T., Mertens, J., Van Langenhove, L., Kiekens, P., and Verbruggen, G.: Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. 19, 2963 (2008).CrossRefGoogle ScholarPubMed
Vollrath, F.: Strength and structure of spiders' silks. J. Biotechnol. 74, 67 (2000).Google ScholarPubMed
Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., and Kaplan, D.L.: Silk-based biomaterials. Biomaterials 24, 401 (2003).CrossRefGoogle ScholarPubMed
Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Vunjak-Novakovic, G., and Kaplan, D.L.: The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26, 147 (2005).CrossRefGoogle ScholarPubMed
Hardy, J.G. and Scheibel, T.R.: Composite materials based on silk proteins. Prog. Polym. Sci. 35, 1093 (2010).CrossRefGoogle Scholar
Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L., and Kaplan, D.L.: Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612 (2011).CrossRefGoogle ScholarPubMed
Jin, H-J., Chen, J., Karageorgiou, V., Altman, G.H., and Kaplan, D.L.: Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25, 1039 (2004).CrossRefGoogle ScholarPubMed
Nazarov, R., Jin, H-J., and Kaplan, D.L.: Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5, 718 (2004).CrossRefGoogle ScholarPubMed
Hofmann, S., Wong Po Foo, C., Rossetti, F., Textor, M., Vunjak-Novakovic, G., Kaplan, D., Merkle, H., and Meinel, L.: Silk fibroin as an organic polymer for controlled drug delivery. J. Control. Release 111, 219 (2006).CrossRefGoogle ScholarPubMed
Hermanson, K.D., Huemmerich, D., Scheibel, T., and Bausch, A.R.: Engineered microcapsules fabricated from reconstituted spider silk. Adv. Mater. 19, 1810 (2007).CrossRefGoogle Scholar
Gomes, S.C., Leonor, I.B., Mano, J.F., Reis, R.L., and Kaplan, D.L.: Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32, 4255 (2011).CrossRefGoogle ScholarPubMed
Kim, D-H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y-S., Blanco, J.A., Panilaitis, B., Frechette, E.S., and Contreras, D.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511 (2010).CrossRefGoogle ScholarPubMed
Kim, S., Mitropoulos, A.N., Spitzberg, J.D., Tao, H., Kaplan, D.L., and Omenetto, F.G.: Silk inverse opals. Nat. Photonics 6, 818 (2012).CrossRefGoogle Scholar
MacLeod, J. and Rosei, F.: Photonic crystals: Sustainable sensors from silk. Nat. Mater. 12, 98 (2013).CrossRefGoogle ScholarPubMed
Diao, Y.Y., Liu, X.Y., Toh, G.W., Shi, L., and Zi, J.: Multiple structural coloring of silk‐fibroin photonic crystals and humidity‐responsive color sensing. Adv. Funct. Mat. 23, 5373 (2013).CrossRefGoogle Scholar
Lawrence, B.D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D.L., and Omenetto, F.G.: Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214 (2008).CrossRefGoogle ScholarPubMed
Amsden, J.J., Perry, H., Boriskina, S.V., Gopinath, A., Kaplan, D.L., Dal Negro, L., and Omenetto, F.G.: Spectral analysis of induced color change on periodically nanopatterned silk films. Opt. Express 17, 21271 (2009).CrossRefGoogle ScholarPubMed
Amsden, J.J., Domachuk, P., Gopinath, A., White, R.D., Negro, L.D., Kaplan, D.L., and Omenetto, F.G.: Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 22, 1746 (2010).CrossRefGoogle ScholarPubMed
Huang, X., Liu, G., and Wang, X.: New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Adv. Mater. 24, 1482 (2012).CrossRefGoogle ScholarPubMed
Fuente, R., Mendioroz, A., and Salazar, A.: Revising the exceptionally high thermal diffusivity of spider silk. Mater. Lett. 114, 1 (2014).CrossRefGoogle Scholar
Zhang, L., Chen, T., Ban, H., and Liu, L.: Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein. Nanoscale 6, 7786 (2014).CrossRefGoogle ScholarPubMed
Tulachan, B., Meena, S.K., Rai, R.K., Mallick, C., Kusurkar, T.S., Teotia, A.K., Sethy, N.K., Bhargava, K., Bhattacharya, S., Kumar, A., Sharma, R.K., Sinha, N., Singh, S.K., and Das, M.: Electricity from the silk cocoon membrane. Sci. Rep. 4, 5434 (2014).CrossRefGoogle ScholarPubMed
Brown, C.P., Rosei, F., Traversa, E., and Licoccia, S.: Spider silk as a load-bearing biomaterial: Tailoring mechanical properties via structural modifications. Nanoscale 3, 870 (2011).CrossRefGoogle Scholar
Work, R.W.: Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae). J. Exp. Biol. 118, 379 (1985).CrossRefGoogle Scholar
Liu, Y., Shao, Z., and Vollrath, F.: Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901 (2005).CrossRefGoogle ScholarPubMed