Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T09:15:12.312Z Has data issue: false hasContentIssue false

X-ray reflectometry and spectroscopic ellipsometry characterization of Al2O3 atomic layer deposition on HF-last and NH3 plasma pretreatment Si substrates

Published online by Cambridge University Press:  03 March 2011

Hong-Liang Lu
Affiliation:
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
Min Xu
Affiliation:
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
Shi-Jin Ding
Affiliation:
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
Wei Chen
Affiliation:
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
David Wei Zhang*
Affiliation:
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
Li-Kang Wang
Affiliation:
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: dwzhang@fudan.edu.cn
Get access

Abstract

Al2O3 films are grown by atomic layer deposition (ALD) using trimethylaluminum and water as precursors on HF-last and NH3 plasma pretreatment Si substrates. The thickness, surface roughness, and density of Al2O3 films as well as the nature of their interlayers with Si substrates are characterized by x-ray reflectivity and spectroscopic ellipsometry techniques. The growth rates of Al2O3 films are 1.1 Å/cycle and 1.3 Å/cycle, respectively, on HF-last and NH3-plasma-nitrided surfaces. Al2O3 layer densities are rather independent of the number of growth cycles in all cases. The interfacial film thickness increases with the number of ALD cycles when deposited on an HF-last Si substrate. However, because SiOxNy inhibits oxygen diffusion, the interfacial film thickness is independent of the number of ALD cycles on the nitrided Si substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).CrossRefGoogle Scholar
2Green, M.L., Gusev, E.P., Degraeve, R., and Garfunkel, E.: Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. J. Appl. Phys. 90, 2057 (2001).CrossRefGoogle Scholar
3Kingon, A.I., Maria, J.P., and Streiffer, S.K.: Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032 (2000).Google Scholar
4Chau, R., Datta, S., Doczy, M., Kavalieros, J., and Metz, M.: Gate dielectric scaling for high-performance CMOS: From SiO2 to high-k, in Proceedings of the International Workshop on Gate Insulator (IWGI), Japan (Japan Society of Applied Physics, Tokyo, 2003), p. 124.Google Scholar
5Gutsche, M., Seidl, H., Luetzen, J., Birner, A., Hecht, T., Jakschik, S., Kerber, M., Leonhardt, M., Moll, P., Pompl, T., Reisinger, H., Ongen, S., Schroeder, U., Sell, B., Wahl, A., and Schumann, D.: Capacitance enhancement techniques for sub-100 nm trench DRAMs, in Proceedings of the International Electron Devices Meeting (IEDM) (IEEE Electron Device Society, Washington, DC, 2001).Google Scholar
6Renault, O., Gosset, L.G., Rouchon, D., and Ermolieff, A.: Angle-resolved x-ray photoelectron spectroscopy of ultrathin Al2O3 films grown by atomic layer deposition. J. Vac. Sci. Technol., A 20, 1867 (2002).CrossRefGoogle Scholar
7Matero, R., Rahtu, A., Ritala, M., Leskela, M., and Sajavaara, T.: Effect of water dose on the atomic layer deposition rate of oxide thin films. Thin Solid Films 368, 1 (2000).Google Scholar
8Frank, M.M., Chabal, Y.J., Green, M.L., Delabie, A., Brijs, B., Wilk, G.D., Ho, M-Y., da Rosa, E.B.O., Baumvol, I.J.R., and Stedile, F.C.: Enhanced initial growth of atomic-layer-deposited metal oxides on hydrogen-terminated silicon. Appl. Phys. Lett. 83, 740 (2003).Google Scholar
9Kuse, R., Kundu, M., Yasuda, T., Miyata, N., and Toriumi, A.: Effect of precursor concentration in atomic layer deposition of Al2O3. J. Appl. Phys. 94, 6411 (2003).CrossRefGoogle Scholar
10Kimoto, K., Matsui, Y., Nabatame, T., Yasuda, T., Mizoguchi, T., Tanaka, I., and Toriumi, A.: Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures. Appl. Phys. Lett. 83, 4306 (2003).CrossRefGoogle Scholar
11Busch, B.W., Pluchery, O., Chabal, Y.J., Muller, D.A., Opila, R.L., Kwo, J.R., and Garfunkel, E.: Materials characterization of alternative gate dielectrics. MRS Bull. 27, 206 (2002).CrossRefGoogle Scholar
12Puurunen, R.L., Vandervorst, W., Besling, W.F.A., Richard, O., Bender, H., Conard, T., Zhao, C., Delabie, A., Caymax, M., Gendt, S.D., Heyns, M., Viitanen, M.M., Ridder, M., Brongersma, H.H., Tamminga, Y., Dao, T., Win, T., Verheijen, M., Kaiser, M., and Tuominen, M.: Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy. J. Appl. Phys. 96, 4878 (2004).Google Scholar
13Misra, V., Lucovsky, G., and Parsons, G.: Issues in high-k gate stack interfaces. MRS Bull. 27, 212 (2002).Google Scholar
14Lee, J.C. and Oh, S-J.: Nondestructive depth profile of the chemical state of ultrathin Al2O3/Si interface. Appl. Phys. Lett. 84, 3561 (2004).Google Scholar
15Xu, M., Xu, C.H., Ding, S.J., Lu, H.L., Zhang, D.W., and Wang, L.K.: Spectroscopic and electrical properties of atomic layer deposition Al2O3 gate dielectric on surface pretreated Si substrate. J. Appl. Phys. 99, 074109 (2006).Google Scholar
16Brewer, R.T., Ho, M-T., Zhang, K.Z., Goncharova, L.V., Starodub, D.G., Gustafsson, T., Chabal, Y.J., and Moumen, N.: Ammonia pretreatment for high-kappa dielectric growth on silicon. Appl. Phys. Lett. 85, 3830 (2004).Google Scholar
17Felix, J.A., Xiong, H.D., Fleetwood, D.M., Gusev, E.P., Schrimpf, R.D., Sternberg, A.L., and D’Emic, C.: Interface trapping properties of nMOSFETs with Al2O3/SiOxNy/Si(100) gate dielectric stacks after exposure to ionizing radiation. Microelectron. Eng. 72, 50 (2004).Google Scholar
18Banerjee, S., Ferrari, S., Chateigner, D., and Gibaud, A.: Recent advances in characterization of ultra-thin films using specular x-ray reflectivity technique. Thin Solid Films 450, 23 (2004).CrossRefGoogle Scholar
19Russell, C.H.: X-ray reflectivity study of exotic materials for electronic applications, in Silicon Materials–Processing, Characterization and Reliability edited by Veteran, J.L.O’Meara, D.L., Misra, V. and Ho, P.S. (Mater. Res. Soc. Symp. Proc. 716, Warrendale, PA, 2002), p. B1.3.1.Google Scholar
20Jensen, J.M., Oelkers, A.B., Toivola, R., and Johnson, D.C.: X-ray reflectivity characterization of ZnO/Al2O3 multilayers prepared by atomic layer deposition. Chem. Mater. 14, 276 (2002).CrossRefGoogle Scholar
21Sun, L., Defranoux, C., Stehle, J.L., Boher, P., Evrard, P., Bellandi, E., and Bender, H.: Characterization of high-k dielectrics by combined spectroscopic ellipsometry (SE) and x-ray reflectometry (XRR), in Fundamentals of Novel Oxide/Semiconductor Interfaces edited by Abernathy, C.R., Gusev, E.P., Schlom, D. and Stemmer, S. (Mater. Res. Soc. Symp. Proc. 786, Warrendale, PA, 2004), p. E3.29.1.Google Scholar
22Ferrari, S., Modreanu, M., Scarel, G., and Fanciulli, M.: X-ray reflectivity and spectroscopic ellipsometry as metrology tools for the characterization of interfacial layers in high-k materials. Thin Solid Films 450, 124 (2004).CrossRefGoogle Scholar
23Boher, P., Defranoux, C., Heinrich, P., Wolstenholme, J., and Bender, H.: VUV spectroscopic ellipsometry applied to the characterization of high-k dielectrics. Mater. Sci. Eng., B 109, 64 (2004).CrossRefGoogle Scholar
24Xu, M., Chen, W., Ding, S.J., Sun, L., Sun, Q.Q., Lu, H.L., Zhang, D.W., and Wang, L.K.: Theoretical study of effects of NH3 pre-treatment on atomic layer deposition Al2O3 on Si substrate. J. Phys.: Condens. Matter (submitted).Google Scholar
25Gosset, L.G., Damlencourt, J-F., Renault, O., Rouchon, D., Holliger, Ph., Ermolieff, A., Trimaille, I., Ganem, J-J., Martin, F., and Semeria, M-N.: Interface and material characterization of thin Al2O3 layers deposited by ALD using TMA/H2O. J. Non-Cryst. Solids 303, 17 (2002).CrossRefGoogle Scholar
26Min, Y-S., Cho, Y.J., and Hwang, C.S.: Atomic layer deposition of Al2O3 thin films from a 1-methoxy-2-methyl-2-propoxide complex of aluminum and water. Chem. Mater. 17, 626 (2005).CrossRefGoogle Scholar
27Groner, M.D., Fabreguette, F.H., Elam, J.W., and George, S.M.: Low-temperature Al2O3 atomic layer deposition. Chem. Mater. 16, 639 (2004).Google Scholar
28Lai, Y.S. and Chen, J.S.: Spectroscopic ellipsometry study on the structure of Ta2O5/SiOxNy/Si gate dielectric stacks. Thin Solid Films 420–421, 117 (2002).Google Scholar