Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T17:26:21.323Z Has data issue: false hasContentIssue false

Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load–penetration data

Published online by Cambridge University Press:  01 February 2005

J. Alkorta
Affiliation:
Department of Materials, Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and TECNUN (University of Navarra), 20018 San Sebastián, Spain
J.M. Martínez-Esnaola
Affiliation:
Department of Materials, Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and TECNUN (University of Navarra), 20018 San Sebastián, Spain
J. Gil Sevillano
Affiliation:
Department of Materials, Centro de Estudios e Investigaciones Técnicas de Gipuzkoa (CEIT) and TECNUN (University of Navarra), 20018 San Sebastián, Spain
Get access

Abstract

The connection between parameters that can be measured by means of instrumented indentation with the real mechanical properties has been a matter of discussion for several years. In fact, even hardness is not a readily measurable magnitude since the real contact area depends on both the elastic and plastic properties of the sample. Recently, Dao et al. [ Acta Mater49, 3899 (2001)] proposed a method based on numerical fittings to calculate by a forward-reverse algorithm the elastoplastic properties of a sample from the load-penetration curve obtained with a sharp indenter. This work will show, in contrast, that it is not possible to measure uniquely these mechanical properties of a sample in that way.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
2.Mata, M., Anglada, M. and Alcalá, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).CrossRefGoogle Scholar
3.Choi, Y., Lee, B-W., Lee, H-S. and Kwon, D.: Indentation curve analysis for pile-up, sink-in and tip-blunting effects in sharp indentations, in Thin Films—Stresses and Mechanical Properties X, edited by Corcoran, S.G., Joo, Y-C., Moody, N.R., and Z. Suo. (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004) p. 11.Google Scholar
4.Alkorta, J. and Sevillano, J. Gil: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultra fine grain (equal channel angular pressed) eutectic Sn-Bi alloy. J. Mater. Res. 19, 282 (2004).CrossRefGoogle Scholar
5.Alkorta, J. and Sevillano, J. Gil: Medida de la dureza de sólidos mediante nanoindentación. B. Soc. Esp. Cer. Vidrio. (in press, 2005).Google Scholar
6.McElhaney, K.W., Vlassak, J.J. and Nix, W.D.: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).CrossRefGoogle Scholar
7.Taljat, B., Zacharia, T. and Pharr, G.M.: Pile-up behavior of spherical indentations in engineering materials, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 33.Google Scholar
8.Sneddon, I.N.: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Engng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
9.Sneddon, I.N.: Boussinesq’s problem for a rigid cone. Proc. Cambridge Phil. Soc. 44, 492 (1948).CrossRefGoogle Scholar
10.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
11.Cheng, Y-T. and Cheng, C-M.: Relationship between hardness, elastic modulus and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).CrossRefGoogle Scholar
12.Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R. 44, 91 (2004).CrossRefGoogle Scholar
13.Cheng, Y-T. and Cheng, C-M.: Can stress-strain relationships be obtained from indentation curves using conical or pyramidal indenters? J. Mater. Res. 14, 3493 (1999).CrossRefGoogle Scholar
14.Capehart, T.W. and Cheng, Y-T.: Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 18, 827 (2003).CrossRefGoogle Scholar
15.Tho, K.K., Swaddiwudhipong, S., Liu, Z.S., Zeng, K. and Hua, J.: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 (2004).CrossRefGoogle Scholar
16.Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).CrossRefGoogle Scholar
17.Bower, A.F., Fleck, N.A., Needleman, A. and Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. London A441, 97 (1993).Google Scholar
18.Storåkers, B., Biwa, S. and Larsson, P-L.: Similarity analysis of inelastic contact. Int. J. Solids. Struct 34, 3061 (1997).CrossRefGoogle Scholar
19.Hay, J.C., Bolshakov, A. and Pharr, G.M.: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999).CrossRefGoogle Scholar
20.Stillwell, N.A. and Tabor, D.: Elastic recovery of conical indentations. Proc. Phys. Soc. 78, 169 (1961).CrossRefGoogle Scholar
21.Marx, V. and Balke, H.: A critical investigation of the unloading behavior of sharp indentation. Acta Mater. 45, 3791 (1997).CrossRefGoogle Scholar
22.Johnson, K.L.: Contact Mechanics, 1st ed. (Cambridge University Press, Cambridge, U.K., 1985) p. 175.CrossRefGoogle Scholar
23.Mata, M. and Alcalá, J.: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145 (2004).CrossRefGoogle Scholar
24.Futakawa, M., Wakui, T., Tanabe, Y. and Ioka, I.: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles. J. Mater. Res. 16, 2283 (2001).CrossRefGoogle Scholar
25.Chollacoop, N., Dao, M. and Suresh, S.: Depth sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).CrossRefGoogle Scholar
26.Cheng, Y-T. and Li, Z.: Scaling relationships for indentation measurements. Philos. Mag. A 82, 1821 (2002).CrossRefGoogle Scholar