Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T03:36:47.743Z Has data issue: false hasContentIssue false

Accommodation of large plastic strains and defect accumulation in nanocrystalline Ni grains

Published online by Cambridge University Press:  31 January 2011

X.L. Wu*
Affiliation:
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
E. Ma*
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218
*
a) e-mail: xlwu@imech.ac.cn
b) e-mail: ema@jhu.edu
Get access

Abstract

A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60° type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hansen, N.: Polycrystalline strengthening. Metall. Trans. A 16, 2167 1985CrossRefGoogle Scholar
2Hansen, N.: Cold deformed microstructures. Mater. Sci. Technol. 6, 1039 1990CrossRefGoogle Scholar
3Ashby, M.F.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 1970CrossRefGoogle Scholar
4Kocks, U.F.: The relation between polycrystal deformation and single crystal deformation. Metall. Trans. 1, 1121 1970CrossRefGoogle Scholar
5Mughrabi, H.: Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31, 1367 1983CrossRefGoogle Scholar
6Meyers, M.A.Ashworth, A.: Model for the effect of grain size on the yield stress of metals. Philos. Mag. A 46, 737 1982CrossRefGoogle Scholar
7Kuhlmanwilsdorf, D.Hansen, N.: Geometrically necessary, incidental and subgrain boundaries. Scripta Metall. Mater. 25, 1557 1991CrossRefGoogle Scholar
8Hughes, D.A.Hansen, N.: Microstructural evolution in nickel during rolling to large strains. Metall. Trans. A 24, 2021 1993CrossRefGoogle Scholar
9Schwaiger, R., Moser, B., Dao, M., Chollacoop, N.Suresh, S.: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 2003CrossRefGoogle Scholar
10Masumura, R.A., Hazzledine, P.M.Pande, C.S.: Yield stress of fine grained materials. Acta Mater. 46, 4527 1998Google Scholar
11Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R.Hemker, K.J.: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017 2000CrossRefGoogle Scholar
12Dalla Torre, F., Victoria, M.Van Swygenhoven, H.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 2002CrossRefGoogle Scholar
13Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A.Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 2003Google Scholar
14Hugo, R.C., Kung, H., Weertman, J.R., Mitra, R., Knapp, J.A.Follstaedt, D.M.: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51, 1937 2003Google Scholar
15Shan, Z., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M.Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 2004CrossRefGoogle ScholarPubMed
16Ke, M., Hackney, S.A., Milligan, W.W.Aifantis, E.C.: Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 1995Google Scholar
17Hasnaoui, A., Van Swygenhoven, H.Derlet, P.M.: Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation. Phys. Rev. B 66, 184112 2002CrossRefGoogle Scholar
18Derlet, P.M., Hasnaoui, A.Van Swygenhoven, H.: Atomistic simulations as guidance to experiments. Scripta Mater. 49, 629 2003CrossRefGoogle Scholar
19Hasnaoui, A., Van Swygenhoven, H.Derlet, P.M.: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300, 1550 2003CrossRefGoogle ScholarPubMed
20Liao, X.Z., Zhou, F., Lavernia, E.J., He, D.W.Zhu, Y.T.: Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 83, 5062 2003CrossRefGoogle Scholar
21Wang, Y.M.Ma, E.: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83, 3165 2003CrossRefGoogle Scholar
22Van Swygenhoven, H., Derlet, P.M.Frøseth, A.G.: Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54, 1975 2006CrossRefGoogle Scholar
23Zhang, K., Weertman, J.W.Eastman, J.A.: The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 2004Google Scholar
24Jin, M., Minor, A.M., Stach, E.A., Morris, J.W. Jr.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 2004CrossRefGoogle Scholar
25Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H.Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 2006CrossRefGoogle Scholar
26Liao, X.Z., Kilmametov, A.R., Valiev, R.Z., Gao, H.S., Li, X.D., Mukherjee, A.K., Bingert, J.F.Zhu, Y.T.T.: High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88, 021909 2006CrossRefGoogle Scholar
27Ma, E., Wang, Y.M., Lu, Q.H., Sui, M.L., Lu, L.Lu, K.: Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932 2004CrossRefGoogle Scholar
28Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K.Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 2005CrossRefGoogle Scholar
29Chen, M.W., Ma, E., Hemker, K.J., Sheng, H.W., Wang, Y.M.Cheng, X.: Deformation twinning in nanocrystalline aluminum. Science 300, 1275 2003Google Scholar
30Rosner, H., Markmann, J.Weissmuller, J.: Deformation twinning in nanocrystalline Pd. Philos. Mag. Lett. 84, 321 2004CrossRefGoogle Scholar
31Liao, X.Z., Zhou, F., Lavernia, E.J., He, D.W.Zhu, Y.T.: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632 2003Google Scholar
32Liao, X.Z., Zhao, Y.H., Srinivasan, S.G., Zhu, Y.T., Valiev, R.Z.Gunderov, D.V.: Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 2004CrossRefGoogle Scholar
33Wu, X.L., Tao, N., Hong, Y., Lu, J.Lu, K.: γ–ϵ Martensite transformation and twinning deformation in fcc cobalt during surface mechanical attrition treatment. Scripta Mater. 52, 547 2005CrossRefGoogle Scholar
34Wu, X.L., Zhu, Y.T., Chen, M.W.Ma, E.: Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Mater. 54, 1685 2006CrossRefGoogle Scholar
35Wu, X.L.Ma, E.: Deformation twinning mechanisms in nanocrystalline Ni. Appl. Phys. Lett. 88, 061905 2006CrossRefGoogle Scholar
36Wu, X.L., Zhu, Y.T.Ma, E.: Predictions for partial-dislocation–mediated processes in nanocrystalline Ni by generalized planar fault energy curves: An experimental evaluation. Appl. Phys. Lett. 88, 121905 2006CrossRefGoogle Scholar
37Frøseth, A.G., Derlet, P.M.Van Swygenhoven, H.: Grown-in twin boundaries affecting deformation mechanisms in nc-metals. Appl. Phys. Lett. 85, 5863 2004CrossRefGoogle Scholar
38Frøseth, A.G., Van Swygenhoven, H.Derlet, P.M.: The influence of twins on the mechanical properties of nc-Al. Acta Mater. 52, 2259 2004CrossRefGoogle Scholar
39Milligan, W.W., Hackney, S.A., Ke, M.Aifantis, E.C.: In situ studies of deformation and fracture in nanophase materials. Nanostruct. Mater. 2, 267 1993CrossRefGoogle Scholar
40Rentenberger, C., Waitz, T.Karnthaler, H.P.: HRTEM analysis of nanostructured alloys processed by severe plastic deformation. Scripta Mater. 51, 789 2004Google Scholar
41Williams, D.B.Carter, C.B.: Transmission Electron Microscopy, III: Imaging. A Textbook for Materials Science Plenum Press New York 1996 444CrossRefGoogle Scholar
42Hughes, D.A.Hansen, N.: Microstructure and strength of nickel at large strains. Acta Mater. 48, 2985 2000Google Scholar
43Budrovic, Z., Van Swygenhoven, H., Derlet, P.M., Van Petegem, S.Schmitt, B.: Plastic deformation with reversible peak broadening in nanocrystalline nickel. Science 304, 273 2004CrossRefGoogle ScholarPubMed
44Yamakov, V., Wolf, D., Phillpot, S.R.Gleiter, H.: Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 50, 5005 2002CrossRefGoogle Scholar
45Horita, Z., Smith, D.J., Nemoto, M., Valiev, R.Z.Langdon, T.G.: Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy. J. Mater. Res. 13, 446 1998CrossRefGoogle Scholar
46Huang, J.Y., Zhu, Y.T., Jiang, H.Lowe, T.C.: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497 2001Google Scholar
47Sachs, G.Z.: The plastic deformation mode of polycrystals. Z. Verein Deut. Ing. 72, 734 1928Google Scholar
48Taylor, G.I.: Plastic strain in metals. J. Inst. Met. 62, 307 1938Google Scholar
49Kocks, U.F.Canova, G.R.: In Proc. Conf. Deformation of Polycrystals: Mechanisms and Microstructures, Risø, 1981 Risø National Laboratory Roskilde35–44Google Scholar
50Zhang, X., Wang, H., Narayan, J.Koch, C.C.: Evidence for the formation mechanism of nanoscale microstructures in cryomilled Zn powder. Acta Mater. 49, 1319 2001CrossRefGoogle Scholar
51Iwahashi, Y., Horita, Z., Nemoto, M.Langdon, T.G.: The process of grain refinement in ECAP. Acta Mater. 46, 3317 1998CrossRefGoogle Scholar
52Wu, X., Tao, N., Hong, Y., Xu, B., Lu, J.Lu, K.: Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater. 50, 2075 2002Google Scholar
53Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungar, T., Wang, Y.M., Ma, E.Valiev, R.Z.: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908 2003Google Scholar
54Wang, Y.M., Chen, M.W., Sheng, H.W.Ma, E.: Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J. Mater. Res. 17, 3004 2002CrossRefGoogle Scholar
55Wang, Y.M.Ma, E.: On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85, 2750 2004CrossRefGoogle Scholar
56Wei, Q., Cheng, S., Ramesh, K.T.Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 2004Google Scholar
57Youssef, K.M., Scattergood, R.O., Murty, K.L., Horton, J.A.Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 2005Google Scholar
58Wu, X.L.Ma, E.: Dislocations in nanocrystalline grains. Appl. Phys. Lett. 88, 231911 2006CrossRefGoogle Scholar
59Mitra, R., Chiou, W.A., Weertman, J.R.: In-situ TEM study of deformation mechanisms of sputtered free-standing nanocrystalline nickel films. J. Mater. Res. 19, 1029 2004Google Scholar
60Hollang, L., Hieckmann, E., Brunner, D., Holste, C.Skrotzki, W.: Scaling effects in the plasticity of nickel. Mater. Sci. Eng., A 424(1–2), 138 2006CrossRefGoogle Scholar
61Jin, Z.H., Gumbsch, P., Ma, E., Albe, K., Lu, K., Hahn, H.Gleiter, H.: The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scripta Mater. 54, 1163 2006Google Scholar
62Hughes, D.A.Hansen, N.: Graded nanostructures produced by sliding and exhibiting universal behavior. Phys. Rev. Lett. 87, 135503 2001CrossRefGoogle ScholarPubMed
63He, L.Ma, E.: Processing and microhardness of bulk Cu-Fe nanocomposites. Nanostruct. Mater. 7, 327 1996Google Scholar
64Sheng, H.W., Lu, K.Ma, E.: Melting and freezing behavior of embedded nanoparticles in ball-milled Al-10wt%M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater. 46, 5195 1998Google Scholar
65Wang, Y.M., Wang, K., Pan, D., Lu, K., Hemker, K.J.Ma, E.: Microsample tensile testing of nanocrystalline copper. Scripta Mater. 48, 1581 2003Google Scholar
66Wang, Y.M.Ma, E.: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 2004CrossRefGoogle Scholar