Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T19:53:55.639Z Has data issue: false hasContentIssue false

Advances in local mechanoelectrochemistry for detecting pitting corrosion in duplex steels

Published online by Cambridge University Press:  01 December 2004

N. Mary
Affiliation:
Laboratoire de Recherches sur la Réactivité des Solides, Unité Mixte de Recherche, 5613 Centre National de la Recherche Scientifique—Université de Bourgogne, 21078 Dijon, France
V. Vignal*
Affiliation:
Laboratoire de Recherches sur la Réactivité des Solides, Unité Mixte de Recherche, 5613 Centre National de la Recherche Scientifique—Université de Bourgogne, 21078 Dijon, France
R. Oltra
Affiliation:
Laboratoire de Recherches sur la Réactivité des Solides, Unité Mixte de Recherche, 5613 Centre National de la Recherche Scientifique—Université de Bourgogne, 21078 Dijon, France
L. Coudreuse
Affiliation:
Industeel, Centre de Recherches des Matériaux du Creusot, 71200 Le Creusot, France
*
a) Address all correspondence to this author. e-mail: vvignal@u-bourgogne.fr
Get access

Abstract

The goal of this study was to demonstrate that a relationship exists between surface stress and pitting corrosion. The surface stress field generated by polishing was first calculated using a thermomechanical model and a finite element code. Pitting corrosion tests performed at the microscale along the austenite/ferrite interface using the electrochemical microcell technique were then analyzed considering the microstructure, and the residual surface stress field calculated numerically under the microcapillary. Mechanical criteria are proposed leading to an enhancement of pitting corrosion of duplex steels.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Potgieter, J.H. and Cortie, M.B.: Determination of the microstructure and alloy element distribution in experimental duplex stainless steels. Mater. Charact. 26, 155 (1991).Google Scholar
2Perren, R.A., Suter, T.A., Uggowitzer, P.J., Weber, L., Magdowski, R., Bohni, H. and Speidel, M.O.: Corrosion resistance of super duplex stainless steels in chloride ion containing environments: Investigations by means of a new microelectrochemical method: I. Precipitation-free states. Corros. Sci. 43, 707 (2001).Google Scholar
3Femenia, M., Pan, J., Leygraf, C. and Luukkonen, P.: In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy. Corros. Sci. 43, 1939 (2001).Google Scholar
4Aldykiewicz, A.J. and Issacs, H.S.: Dissolution characteristics of duplex stainless steels in acidic environments. Corros. Sci. 40, 1627 (1998).CrossRefGoogle Scholar
5Vignal, V., Favergeon, J. and Oltra, R.: Finite-element method for the determination of the surface stress field from the real microstructure of anisotropic materials. Philos. Mag. Lett. 82, 503 (2002).Google Scholar
6Johansson, J., Oden, M. and Zeng, X.H.: Evolution of the residual stress state in a duplex stainless steel during loading. Acta Mater. 47, 2669 (1999).Google Scholar
7Vignal, V., Mary, N., Valot, C., Oltra, R. and Coudreuse, L.: Influence of elastic deformation on initiation of pits on duplex stainless steels. Electrochem. Solid-State Lett. 7, C39 (2004).Google Scholar
8Muller, P. and Saul, A.: Elastic effects on surface physics. Surf. Sci. Rep. 54, 157 (2004).CrossRefGoogle Scholar
9Mechanochemistry of Materials, edited by Gutman, E.M. (Cambridge International Science Publishing, Cambridge, U.K., 1998)Google Scholar
10Mary, N., Vignal, V., Oltra, R. and Coudreuse, L.: Finite-element and XRD methods for the determination of the residual surface stress field and the elastic-plastic behaviour of duplex steels. Philos. Mag. A. (in press)Google Scholar
11Tanaka, S., Hara, N. and Sugimoto, K.: Corrosion characteristics of Fe2O3-Cr2O3 artificial passivation films under potentiostatic control. Mater. Sci. Eng. A 198, 63 (1995).CrossRefGoogle Scholar
12Bohni, H., Suter, T. and Assi, F.: Micro-electrochemical techniques for studies of localized processes on metal surfaces in the nanometer range. Surf. Coat. Technol. 130, 80 (2000).CrossRefGoogle Scholar
13Nye, J.F.: Physical Properties of Crystals. Their Representation by Tensors and Matrices (Oxford University Press, Oxford, U.K., 1985)Google Scholar
14Kocks, U.F., Tomé, C.N. and Wenk, H.R. in Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties (Cambridge University Press, Cambridge, U.K., 1998)Google Scholar
15Wang, Y.D., Peng, R.L. and Mcgreevy, R.: High anisotropy of orientation dependent residual stress in austenite of cold rolled stainless steel. Scripta Mater. 41, 995 (1999).CrossRefGoogle Scholar
16Brandes, E.A. Elastic properties, damping capacity and shape memory alloys, in Smithless Metals Reference Book, 6th ed., edited by Brandes, E.A. (Butterworth, 1983), pp. 15–5Google Scholar
17Siegmund, T., Werner, E. and Fischer, F.D.: On the thermomechanical deformation behavior of duplex-type materials. J. Mech. Phys. Solids 43, 495 (1995).Google Scholar
18Fischer, F.D., Rammerstorfer, F.G. and Bauer, F.J.: Fatigue and fracture of high-alloyed steel specimens subjected to purely thermal cycling. Metall. Trans. A 21A, 935 (1990).CrossRefGoogle Scholar
19Garfias-Mesias, L.F., Sykes, J.M. and Tucke, C.D.S.: The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions. Corros. Sci. 38, 1319 (1996).Google Scholar
20Siow, K.S., Wong, T.Y. and Qiu, J.H.: Pitting corrosion of duplex stainless steels. Anti-Corros. Methods Mater. 48, 31 (2001).Google Scholar