Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T02:51:53.039Z Has data issue: false hasContentIssue false

Alkali-resistant oxynitride glasses

Published online by Cambridge University Press:  31 January 2011

T.M. Holmes
Affiliation:
Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
G.L. Leatherman
Affiliation:
Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
T. El-Korchi
Affiliation:
Department of Civil Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
Get access

Abstract

Oxynitride glasses in the Si–Zr–Na–Li–K–B–O–N system have been produced via incorporation of Si3N4 into the glass structure. This system is the oxynitride analogue of commercially available alkali resistant (AR) glasses used for concrete reinforcement. Glasses with nitrogen contents up to approximately 4 at.% have been obtained. Hardness, fracture toughness, and chemical durability were found to increase with increasing nitrogen content. Fibers were drawn from the glasses containing approximately 4 at.% nitrogen and used to produce reinforced cement composites. The microstructure of the fiber-matrix interface was examined in these samples after aging and compared to that of oxide AR glass fiber-matrix interface. Measurement of the wetting behavior of aqueous solution as a function of the nitrogen content of the glass suggests that this difference in microstructure is the result of changes in physiochemical properties of the glass surface due to the incorporation of nitrogen into the glass structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Proctor, B. A., in Proceedings of the Symposium on Fibrous Concrete (The Construction Press, Lancaster, England, 1980), p. 69.Google Scholar
2Proctor, B. A., Oakley, D. R., and Litherland, K., Composites 13, 173 (1982).CrossRefGoogle Scholar
3Bentur, A., Ben-Bassat, M., and Schneider, D., J. Am. Ceram. Soc. 68, 203 (1985).CrossRefGoogle Scholar
4Paul, A., J. Mater. Sci. 12, 2246 (1977).CrossRefGoogle Scholar
5Shah, S. P., Daniel, J. I., and Ludirja, D., Prestressed Concrete Institute Journal 89, 82 (1987).Google Scholar
6Majumdar, A. J., West, J. M., and Lamer, L. J., J. Mater. Sci. 12, 927 (1977).CrossRefGoogle Scholar
7Majumdar, A. J. and Laws, V., Composites 10, 17 (1979).CrossRefGoogle Scholar
8Stucke, M. J. and Majumdar, A. J., J. Mater. Sci. 11, 1019 (1976).CrossRefGoogle Scholar
9Mills, R. H., J. Cement and Concrete Research 11, 421 (1981).CrossRefGoogle Scholar
10Mills, R. H., J. Cement and Concrete Research 11, 689 (1981).CrossRefGoogle Scholar
11Leonard, S. and Bentur, A., J. Cement and Concrete Research 14, 717 (1984).CrossRefGoogle Scholar
12Loehman, R. E., in Treatise on Materials Science and Technology, edited by Tomozawa, M. and Doremus, R. H. (Academic Press, Orlando, FL, 1985), Vol. 26, p. 119.Google Scholar
13Shillito, K. R., Wills, R. R., and Bennett, R. G., J. Am. Ceram. Soc. 61, 537 (1978).CrossRefGoogle Scholar
14Loehman, R. E., J. Am. Ceram. Soc. 62, 491 (1979).CrossRefGoogle Scholar
15Messier, D. R. and Broz, A., J. Am. Ceram. Soc. 65, C123 (1982).CrossRefGoogle Scholar
16Hampshire, S., Drew, R. L., and Jack, K. H., J. Am. Ceram. Soc. 67, C46 (1984).CrossRefGoogle Scholar
17Sakka, S., Kamiya, K., and Yoko, T., J. Non-Cryst. Solids 56, 147 (1983).CrossRefGoogle Scholar
18Homeny, J. and McGarry, D. L., J. Am. Ceram. Soc. 67, C225 (1984).CrossRefGoogle Scholar
19Coon, D. N., Rapp, J. G., Bradt, R. C., and Pantano, C. G., J. Non-Cryst. Solids 56, 161 (1983).CrossRefGoogle Scholar
20Abramovici, R. and Ish-Shalom, M., Ind. Eng. Chem. Prod. Res. Dev. 24, 586 (1985).CrossRefGoogle Scholar
21Sakka, S., Annu. Rev. Mater. Sci. 16, 29 (1986).CrossRefGoogle Scholar
22Yao, L. P., Fan, Q. X., and Hu, G. G., J. Non-Cryst. Solids 56, 167 (1983).Google Scholar
23Unuma, H., Komori, K., and Sakka, S., J. Non-Cryst. Solids, 95 & 96, 913 (1987).CrossRefGoogle Scholar
24Wald, J. W., Messier, D. R., and DeGuire, E. I., Int. J. High Technol. Ceram. 2, 65 (1986).CrossRefGoogle Scholar
25Tomozawa, M., Erwin, C. Y., Takata, M., and Watson, E. B., J. Am. Ceram. Soc. 65, 182 (1982).CrossRefGoogle Scholar
26Lawn, B. R. and Fuller, E. R., J. Mater. Sci. 10, 2016 (1975).CrossRefGoogle Scholar
27Messier, D. R., Deguire, E. J., and Katz, R. N., U.S. Patent 4609631 (September 2, 1986).Google Scholar
28Messier, D. R., Gleisner, R. P., and Rich, R. E., J. Am. Ceram. Soc. 72, 2183 (1989).CrossRefGoogle Scholar