Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T04:40:47.497Z Has data issue: false hasContentIssue false

All chemical YBa2Cu3O7 superconducting multilayers: Critical role of CeO2 cap layer flatness

Published online by Cambridge University Press:  31 January 2011

M. Coll*
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
J. Gàzquez
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
R. Huhne
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
B. Holzapfel
Affiliation:
IFW-Dresden, Institute for Metallic Materials, 01171 Dresden, Germany
Y. Morilla
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
J. García-López
Affiliation:
Centro Nacional de Aceleradores, E-41092 Sevilla, Spain
A. Pomar
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
F. Sandiumenge
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
T. Puig
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
X. Obradors
Affiliation:
Institut de Ciencia de Materials de Barcelona (ICMAB/CSIC) Campus de la UAB, Barcelona 08193, Spain
*
a) Address all correspondence to this author. e-mail: mcollbau@nist.gov
Get access

Abstract

New advances toward microstructural improvement of epitaxial CeO2 films grown by chemical solution deposition and their use as buffer layers for YBa2Cu3O7 (YBCO) films are presented. We demonstrate that the degree of epitaxy and the fraction of (001) atomically flat surface area are controlled by the incorporation of tetravalent (Zr4+) or trivalent (Gd3+) cations into the ceria lattice. The degree of epitaxy has been investigated by means of Rutherford backscattering spectroscopy-channeling and reflection high-energy electron diffraction, and a new methodology is also presented to quantify the fraction of (001) atomically flat area from atomic force microscopy images. Results are further correlated with the superconducting properties, microstructure, and texture of YBCO films grown by the trifluoroacetate route. A comparison with pulsed laser deposition and YBCO films grown on the same ceria layers is also presented. This growth procedure has allowed us to obtain all chemical multilayer films with controlled microstructure and critical current densities above 4 MA cm−2 at 77 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Larbalestier, D.C.Gurevich, A.Feldmann, D.M. and Polyanskii, A.: High-Tc superconducting materials for electric power applications. Nature 414, 368 (2001).CrossRefGoogle ScholarPubMed
2Paranthaman, M. and Izumi, T.: High-performance YBCO-coated superconductor wires. MRS Bull. 29,(8) 533 (2004).Google Scholar
3Usoskin, A. and Freyhardt, H.C.: YBCO-coated conductors manufactured by high-rate pulsed laser deposition. MRS Bull. 29, 583 (2004).CrossRefGoogle Scholar
4Arendt, P.N. and Foltyn, S.R.: Biaxially textured IBAD-MgO templates for YBCO-coated conductors. MRS Bull. 29, 543 (2004).CrossRefGoogle Scholar
5Iijima, Y.Kakimoto, K.Yamada, Y.Izumi, T.Saitoh, T. and Shiohara, Y.: Research and development of biaxially textured IBAD-GZO templates for coated superconductors. MRS Bull. 29, 564 (2004).Google Scholar
6Obradors, X.Puig, T.Pomar, A.Sandiumenge, F.Mestres, N.Coll, M.Cavallaro, A.Roma, N.Gazquez, J.Gonzalez, J.C.Castano, O.Gutierrez, J.Palau, A.Zalamova, K.Morlens, S.Hassini, A.Gibert, M.Ricart, S.Moreto, J.M.Piñol, S., Isfort, D. and Bock, J.: Progress towards all-chemical superconducting YBCO coated-conductors. Supercond. Sci. Technol. 19, s1 (2006).CrossRefGoogle Scholar
7Rupich, M.W.Verebelyi, D.T.Zhang, W.Kodenkandath, T. and Li, X.: Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires. MRS Bull. 29,(8) 572 (2004).CrossRefGoogle Scholar
8Schwartz, R.W.Schneller, T. and Waser, R.: Chemical solution deposition of electronic oxide films. Compt. Rendus Chem. 7, 433 (2004).CrossRefGoogle Scholar
9Rupich, M.W.Palm, W.Zhang, W.Siegal, E.Annavarapu, S.Fritzemeier, L.Teplitsky, M.D.Thieme, C. and Paranthaman, M.: Growth and characterization of oxide buffer layers for YBCO coated conductors. IEEE Trans. Appl. Supercond. 9, 1527 (1999).CrossRefGoogle Scholar
10Zhou, Y.X.Zhang, X.Fang, H.Putman, R.T. and Salama, K.: Development of single solution buffer layers on textured Ni substrate for HTS coated conductors. IEEE Trans. Appl. Supercond. 15, 2711 (2005).Google Scholar
11Siegal, M.P.Clem, P.G.Dawley, J.T.Ong, R.J.Rodriguez, M.A. and Overmyer, D.L.: All solution-chemistry approach for YBa2Cu3O7-d-coated conductors. Appl. Phys. Lett. 80, 2710 (2002).Google Scholar
12Engel, S.Knoth, K.Hühne, R., Schultz, L. and Holzapfel, B.: An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni-W substrates for YBCO-coated conductors. Supercond. Sci. Technol. 18, 1385 (2005).CrossRefGoogle Scholar
13Pomar, A.Cavallaro, A.Coll, M.Gazquez, J.Sandiumenge, F.Puig, T.Obradors, X. and Freyhardt, H.C.: All chemical YBaCuO-coated conductors on IBAD/YSZ substrates. Supercond. Sci. Technol. 19, L1 (2006).CrossRefGoogle Scholar
14Sathyamurthy, S.Paranthaman, M.Heatherly, L.Martin, P.A.Specht, E.D.Goyal, A.Kodenkandath, T.Li, X.P. and Rupich, M.W.: Solution-processed lanthanum zirconium oxide as a barrier layer for high I-c-coated conductors. J. Mater. Res. 21, 910 (2006).CrossRefGoogle Scholar
15Bhuiyan, M.S.Paranthaman, M.Sathyamurthy, S.Aytug, T.Kang, S.Lee, D.F.Goyal, A.Payzant, E.A. and Salama, K.: MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors. Supercond. Sci. Technol. 16, 1305 (2003).CrossRefGoogle Scholar
16Stewart, E.Bhuiyan, M.S.Sathyamurthy, S. and Paranthaman, M.: Studies of solution deposited cerium oxide thin films on textured Ni-alloy substrates for YBCO superconductor. Mater. Res. Bull. 41, 1063 (2006).CrossRefGoogle Scholar
17Cavallaro, A.Sandiumenge, F.Gazquez, J.Puig, T.Obradors, X.Arbiol, J. and Freyhardt, H.C.: Growth mechanism, microstructure and surface modification of nanostructured CeO2 films by chemical solution deposition. Adv. Funct. Mater. 16, 1363 (2006).CrossRefGoogle Scholar
18Coll, M.Gazquez, J.Sandiumenge, F.Puig, T.Obradors, X.Espinós, J.P., and Hühne, R.: Nanostructural control in solution-derived epitaxial Ce1-xGdxO2-y films. Nanotechnology 19, 395601 (2008).CrossRefGoogle ScholarPubMed
19Coll, M.Gazquez, J.Mansilla, C.Espinos, J.Morrilla, Y.Garcia, J.Sandiumenge, F.Puig, T. and Obradors, X.: (in preparation).Google Scholar
20Wesolowksi, D.E. and Cima, M.J.: Nitrate-based metalorganic deposition of CeO2 on yttria-stabilized zirconia. J. Mater. Res. 21, 1 (2006).Google Scholar
21Develos-Bagarinao, K., Yamasaki, H. and Nakagawa, Y.: Effect of surface modification of CeO2 buffer layers on Jc and defect microstructures of large-area YBCO thin films. Supercond. Sci. Technol. 19, 873 (2006).CrossRefGoogle Scholar
22Hassini, A.Pomar, A.Gutiérrez, J., Coll, M.Romà, N., Moreno, C.Ruyter, A.Puig, T. and Obradors, X.: Atomically flat MOD La0.7Sr0.3MnO3 buffer layers for high critical current YBa2Cu3O7TFA films. Supercond. Sci. Technol. 20, S230 (2007).CrossRefGoogle Scholar
23Pomar, A.Coll, M.Cavallaro, A.Gazquez, J.Mestres, N.Sandiumenge, F.Puig, T. and Obradors, X.: Interface control in all metallorganic deposited coated conductors: Influence on critical currents. J. Mater. Res. 21, 2176 (2006).CrossRefGoogle Scholar
24Coll, M.Pomar, A.Puig, T. and Obradors, X.: Atomically flat surface: The key issue for solution-derived epitaxial multilayers. Appl. Phys. Exp. 1, 121701 (2008).CrossRefGoogle Scholar
25Pomar, A.Coll, M.Cavallaro, A.Gazquez, J.Gonzalez, J.C.Mestres, N.Sandiumenge, F.Puig, T. and Obradors, X.: All-chemical high-Jc YBa2Cu3O7 multilayers with SrTiO3 as cap layer. J. Mater. Res. 21, 1106 (2006).CrossRefGoogle Scholar
26Romà, N., Morlens, S.Ricart, S.Zalamova, K.Moreto, J.M.Pomar, A.Puig, T. and Obradors, X.: Acid anhydrides: A simple route to highly pure organometallic solutions for superconducting films. Supercond. Sci. Technol. 19, 521 (2006).CrossRefGoogle Scholar
27Zalamova, K.Romà, N., Pomar, A., Morlens, S., Puig, T., Gázquez, J., Carrillo, A.E.Sandiumenge, F.Ricart, S.Mestres, N. and Obradors, X.: Smooth stress relief of trifluoroacetate metal-organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 18, 5897 (2006).CrossRefGoogle Scholar
28Puig, T.Gonzalez, J.C.Pomar, A.Mestres, N.Castano, O.Coll, M.Gazquez, J.Sandiumenge, F.Piñol, S., and Obradors, X.: Influence of growth conditions on the microstructure and critical currents of TFA-MOD YBa2Cu3O7 films. Supercond. Sci. Technol. 18, 1141 (2005).Google Scholar
29Hühne, R., Selbmann, D.Eickemeyer, J.Hanisch, J. and Holzapfel, B.: Preparation of buffer layer architectures for YBa2-Cu3O7-x coated conductors based on surface oxidized Ni tapes. Supercond. Sci. Technol. 19, 169 (2006).CrossRefGoogle Scholar
30Feldman, L.C.Mayer, J.W. and Picraux, S.T.: Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
31Horcas, I.Fernández, R., Gómez-Rodríguez, J.M., and Colchero, J.: WSxM: A software for scanning-probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).CrossRefGoogle Scholar
32Flemming, R.L.: Micro x-ray diffraction (mXRD): A versatile technique for characterization of earth and planetary materials. Can. J. Earth Sci. 44, 1333 (2007).Google Scholar
33He, B.B.: Introduction to two-dimensional x-ray diffraction. Powder Diffr. 18, 71 (2003).CrossRefGoogle Scholar
34Sanchez, A. and Navau, C.: Magnetic properties of finite super-conducting cylinders. I. Uniform applied field. Phys. Rev. B 64, 214507 (2001).CrossRefGoogle Scholar
35Coll, M.Gazquez, J.Puig, T. and Obradors, X.: (in preparation).Google Scholar
36Noguera, C.: Polar oxide surfaces. J. Phys.: Condens. Matter 12, R367 (2000).Google Scholar
37Sayle, T.X.T.Parker, S.C. and Catlow, C.R.A.: The role of oxygen vacancies on ceria surfaces in the oxidation of carbon-monoxide. Surf. Sci. 316, 329 (1994).CrossRefGoogle Scholar
38Balducci, G.Islam, M.Kaspar, J.Fornasiero, P. and Graziani, M.: Bulk reduction and oxygen migration in the ceria-based oxides. Chem. Mater. 12, 677 (2000).CrossRefGoogle Scholar
39Etsell, T.H. and Flengas, S.N.: Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
40Jacobsen, S.N.Helmersson, U.Erlandsson, R.Skarman, B. and Wallenberg, L.R.: Sharp microfaceting of (001)-oriented cerium dioxide thin films and the effect of annealing on surface morphology. Surf. Sci. 429, 22 (1999).Google Scholar
41Chen, P.L. and Chen, I.W.: Grain growth in CeO2: Dopant effects, defect mechanism, and solute drag. J. Am. Ceram. Soc. 79, 1793 (1996).CrossRefGoogle Scholar
42Balducci, G.Kaspar, J.Fornasiero, P.Graziani, M.Islam, M. Saiful, and Gale, J.D.: Computer simulation studies of bulk reduction and oxygen migration in CeO2-ZrO2 solid solutions. J. Phys. Chem. B 101, 1750 (1997).CrossRefGoogle Scholar
43Mamontov, E.Egami, T.Brezny, R.Koranne, M. and Tyagi, S.: Lattice deffects and oxygen storage capacity of nanocrystalline ceria and ceria-zirconia. J. Phys. Chem. B 104, 11110 (2000).CrossRefGoogle Scholar
44Schlom, D.C.Hellman, E.S.Hartford, E.H.Eom, C.B.Clarck, J.C. and Mannhart, J.: Origin of the 9 peaks in YBa2Cu3O7-d films grown on cubic zirconia substrates. J. Mater. Res. 11, 1336 (1996).CrossRefGoogle Scholar
45Matsuda, J.S.Tokunaga, T.Nakaoka, K.Teranishi, R.Aoki, Y.Fuji, H.Yajima, A.Yamada, Y.Izumi, T. and Shiohara, Y.: Transmission electron microscopic studies on crystallization of YBCO films deposited by advanced TFA-MOD method. Physica C 426, 1051 (2005).Google Scholar
46Wesolowski, D.E. and Cima, M.J.: Large area quantification of BaCeO3 formation during processing of metalorganic-deposition-derived YBCO films. J. Mater. Res. 22, 1077 (2007).Google Scholar
47Coll, M.Gazquez, J.Pomar, A.Puig, T.Sandiumenge, F. and Obradors, X.: Stress-induced spontaneous dewetting of heteroepitaxial YBa2Cu3O7 thin films. Phys. Rev. B 73, 075420 (2006).Google Scholar
48McIntyre, P.C. and Cima, M.J.: Heteroepitaxial growth of chemically derived ex-situ Ba2YCu3 O7-x thin films. J. Mater. Res. 9, 2219 (1994).Google Scholar
49Wu, L.Zhu, Y.Solovyov, V.F.Wiesmann, H.J.Moodenbaugh, A. R.Sabatini, R.L. and Suenaga, M.: Nucleation and growth of YBa2Cu3Ox on SrTiO3 and CeO2 by a BaF2 post-deposition reaction process. J. Mater. Res. 16, 2869 (2001).Google Scholar
50Gazquez, J.Sandiumenge, F.Coll, M.Pomar, A.Mestres, N.Puig, T.Obradors, X.Kihn, Y.Casanove, M.J. and Ballesters, C.: Precursor evolution and nucleation mechanism of YBa2Cu3Oxfilms by TFA metal-organic decomposition. Chem. Mater. 18, 6211 (2006).CrossRefGoogle Scholar
51Solovyov, V.F.Wiesmann, H.J. and Suenaga, M.: Nucleation of YBCO on buffered metallic substrates in thick precursor films made by the BaF2 process. Supercond. Sci. Technol. 18, 239 (2005).CrossRefGoogle Scholar
52Solovyov, S.Li, Q.Wiesmann, H.Oleynikov, P. and Zhu, Y.: Strong influence of the YBa2Cu3O7 grain size on critical current densities of thick YBa2Cu3O7 layers made by a metal-organic deposition process. Supercond. Sci. Technol. 21, 125013 (2008).CrossRefGoogle Scholar