Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:12:49.507Z Has data issue: false hasContentIssue false

Alloying and entropy effects in predicting metal/compound–semiconductor interface reactivity

Published online by Cambridge University Press:  31 January 2011

John F. McGilp
Affiliation:
Department of Pure and Applied Physics, University of Dublin, Trinity College, Dublin 2, Ireland
Get access

Abstract

A previous bulk thermodynamic model, which used enthalpies of compound and alloy formation to predict metal/compound–semiconductor interface reactivity, is extended to include entropy. It is shown that, for most metals on CdTe, GaAs, GaSe, InP, and MoS2, solid-state reactions are energetically favored up to semiconductor dissociation temperatures and, consequently, entropy effects are minimal. Gold and silver, with their small enthalpies of metal–semiconductor anion compound formation, can be exceptions. Even here, the results for gold/III–V systems favor solid-state reaction at room temperature, but at higher temperatures entropy drives the reaction via vapor-phase production of the group V element. The binary phase bulk thermodynamic model is not sufficient to predict absolute reactivity, but can rank the reactivity of the various metal–semiconductor combinations successfully, as long as possible alloy formation is included. It is suggested that the limitations of the model are due to the specific effects of the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Brillson, L. J., Phys. Rev. Lett. 40, 260 (1978).CrossRefGoogle Scholar
2Brillson, L. J., Surf. Sci. Rep. 2, 123 (1982).CrossRefGoogle Scholar
3McGovern, I. T., McGilp, J. F., Hughes, G. J., McKinley, A., Williams, R. H., and Norman, D., Vacuum 33, 607 (1983).CrossRefGoogle Scholar
4McGilp, J. F., J. Phys. C 17, 2249 (1984).CrossRefGoogle Scholar
5McGovern, I. T., Dietz, E., Rotermund, H. H., Bradshaw, A. M., Braun, W., Radlik, W., and McGilp, J. F., Surf. Sci. 152/153, 1203 (1985).CrossRefGoogle Scholar
6McGilp, J. F. and McGovern, I. T., J. Vac. Sci. Technol. B 3, 1641 (1985).CrossRefGoogle Scholar
7Newman, N., Schilfgaarde, M. van, Kendelewicz, T., Williams, M. D., and Spicer, W. E., Phys. Rev. B 33, 1146 (1986).CrossRefGoogle Scholar
8Petro, W. G., Kendelewicz, T., Lindau, I., and Spicer, W. E., Phys. Rev. B 34, 7089 (1986).CrossRefGoogle Scholar
9Pugh, J. H. and Williams, R. S., J. Mater. Res. 1, 343 (1986).CrossRefGoogle Scholar
10Swalin, R. A., Thermodynamics of Solids (Wiley, New York, 1972).Google Scholar
11Miedema, A. R., deChatel, P. F., and deBoer, F. R., Physica B 100, 1 (1980).CrossRefGoogle Scholar
12Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon, Oxford, 1979), 5th ed.Google Scholar
13Slough, W., Proceedings of the Symposium on Metallurgical Chemistry, Brunei University and National Physical Laboratory, 1971 (Her Majesty's Stationery Office, London, 1972), p. 311.Google Scholar
14Patterson, M. H. and Williams, R. H., J. Cryst. Growth 59, 281 (1982).CrossRefGoogle Scholar
15Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., and Kelly, K. K., Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973).Google Scholar
16Brandes, E. A., Smithells Metals Reference Book (Butterworths, London, 1983), 6th ed.Google Scholar
17Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumm, R. H., NBS Technical Notes 270-5 (United States Government Printing Office, Washington, DC, 1968).Google Scholar
18Barin, I., Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1977), with supplement.CrossRefGoogle Scholar
19Tmar, M., Gabriel, A., Chatillon, C., and Ansarra, I., J. Cryst. Growth 69, 421 (1984).CrossRefGoogle Scholar
20Daniels, R. R., Zhao, T., and Margaritondo, G., J. Vac. Sci. Technol. A 2, 831 (1984).CrossRefGoogle Scholar
21Nogami, J., Kendelewicz, T., Lindau, I., and Spicer, W. E., Phys. Rev. B 34, 669 (1986).CrossRefGoogle Scholar
22Brillson, L. J. and Brucker, C. F., J. Vac. Sci. Technol. 21, 564 (1982).CrossRefGoogle Scholar
23Kendelewicz, T., List, R. S., Williams, M. D., Bertness, K. A., Lin-dau, I., and Spicer, W. E., Phys. Rev. B 34, 558 (1986).CrossRefGoogle Scholar
24Williams, R. H., Montgomery, V., and Varma, R. R., J. Phys. C 11, L735 (1978).Google Scholar
25Tmar, M., Gabriel, A., Chatillon, C., and Ansarra, I., J. Cryst. Growth 68, 557 (1984).CrossRefGoogle Scholar
26Gallaher, P. K. and Chu, S. N. G., J. Phys. Chem. 86, 3246 (1982).CrossRefGoogle Scholar
27Lince, J. R., Carre, D. J., and Fleischauer, P. D., Phys. Rev. B (to be published).Google Scholar
28Mills, K. C., Thermodynamic Data for Inorganic Sulphides, Selenidesand Tellurides (Butterworths, London, 1974).Google Scholar
29Xu, F., Joyce, J. J., Ruckman, M. W., Chen, H.-W., Boscherini, F., Hill, D. M., Chambers, S. A., and Weaver, J. H., Phys. Rev. B 35, 2375 (1987).CrossRefGoogle Scholar
30Tsai, C. T. and Williams, R. S., J. Mater. Res. 1, 820 (1986).Google Scholar