Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T14:24:33.061Z Has data issue: false hasContentIssue false

Aluminum nitride buffer layer for diamond film growth

Published online by Cambridge University Press:  31 January 2011

V. P. Godbole
Affiliation:
Department of Materials Science / Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
J. Narayan
Affiliation:
Department of Materials Science / Engineering, North Carolina State University, Raleigh, North Carolina 27695–7916
Get access

Abstract

The role of aluminum nitride (AlN) as a buffer layer on the nucleation and growth of diamond on silicon and steel substrates during hot filament chemical vapor deposition (HF-CVD) has been investigated systematically. The scanning Auger electron microscopy (AES) is employed to study chemistry and content of carbon on the surface and in subsurface regions of AlN as a function of HF-CVD parameters. It is found that AlN offers an excellent diffusion barrier for carbon over a wide range of temperature and hydrocarbon content of CVD gas environment, with simultaneous inhibition of graphitization. It also facilitates nucleation of diamond phase. The surface reactions between AlN and carbon are discussed in terms of hydrogen-assisted phase transformations. We have developed a two-step procedure to obtain a continuous diamond film on steel substrates. The characteristic features of AlN have been exploited to obtain adherent and graphite-free diamond deposits on various types of steels, including low carbon steel, tool steel, high speed steel, and bearing steel.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Butler, J. E. and Woodin, R. L., Philos. Trans. R. Soc. London A 342, 209 (1993).Google Scholar
2.Pehrsson, P. E., Celii, F. G., and Butler, J. E., in Diamond Films and Coatings, edited by Davis, R. F. (Noyes Publications, Park Ridge, NJ), p. 68.Google Scholar
3.Yarbrough, W. A. and Messier, R., Science 24, 688 (1990).CrossRefGoogle Scholar
4.Angus, J. C., Wang, Y., and Sunkara, M., Annu. Rev. Mater. Sci. 21, 221 (1991).CrossRefGoogle Scholar
5.Weiser, P. S., Prawer, S., Hoffman, A., Manory, R., Paterson, J. K., and Stuart, S., J. Appl. Phys. 72 (10), 4643 (1992).CrossRefGoogle Scholar
6.Ong, T. P. and Chang, R. P. H., Appl. Phys. Lett. 58, 358 (1991).CrossRefGoogle Scholar
7.Godbole, V. P. and Narayan, J., J. Appl. Phys. 71, 4944 (1992); J. Mater. Res. 7, 2785 (1992).CrossRefGoogle Scholar
8.Chen, X. and Narayan, J., J. Appl. Phys. 74 (6), 4168 (1993).CrossRefGoogle Scholar
9.Belton, D. N. and Schmieg, S. J., J. Appl. Phys. 66 (9), 4223 (1989), and J. Vac. Sci. Technol. A 8, 23 531 (1990).CrossRefGoogle Scholar
10.Narayan, J., Godbole, V. P., Matera, G., and Singh, R. K., J. Appl. Phys. 2, 966 (1992).CrossRefGoogle Scholar
11.Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10 (4), 1237 (1992).CrossRefGoogle Scholar
12.Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
13.Davis, R. F., Proc. IEEE 79, 702 (1991).CrossRefGoogle Scholar
14.Vispute, R. D., Wu, H., Jagannadham, K., and Narayan, J., J. Appl. Phys. 77, 4724 (1995).CrossRefGoogle Scholar
15.Vispute, R. D., Wu, H., and Narayan, J., Appl. Phys. Lett. 67, 1549 (1995).CrossRefGoogle Scholar
16.Meng, W. J., Heremans, J., and Cheng, Y. T., Appl. Phys. Lett. 59 (17), 2097 (1991).CrossRefGoogle Scholar
17.Norton, M. G., Kotula, P. G., and Carter, C. B., J. Appl. Phys. 70 (5), 2871 (1991).CrossRefGoogle Scholar
18.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
19.Zhu, W., Kong, H. S., and Glass, J.T., in Diamond Films and Coatings, edited by Davis, R. F. (Noyes Publications, Park Ridge, NJ), (1993), p. 268.Google Scholar
20.Lurie, P. G. and Wilson, J.M., Surf. Sci. 65, 476 (1977).CrossRefGoogle Scholar
21.Madden, H. H., J. Vac. Sci. Technol. A 18, 677 (1981).CrossRefGoogle Scholar
22.Kubaschewski, O. and Alcock, C. B., Metallurgical ThermoChemistry, 5th ed. (Pergamon Press, New York, 1979), p. 268.Google Scholar
23. Thermodynamical data of pure substances: Part I. by Barin in collaboration with Sauert, F., Rhonhof, E. S., and Sheng, W. S. (VCH Verlagsgesellschaft mbH, D-6940 Weinheim, Germany, 1989) (VCH Publishers, New York, 1989), pp. 26, 42.Google Scholar
24.Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
25.Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).CrossRefGoogle Scholar
26.Slack, G. A. and Bartram, S. F., J. Appl. Phys. 46, 89 (1975).CrossRefGoogle Scholar
27.Yang, H. and Whitten, J.L., J. Chem. Phys. 96, 5529 (1992).CrossRefGoogle Scholar
28.Li, J., Wang, L., Suzuki, T., Argoitia, A., Pirouz, P., and Angus, J. C., J. Appl. Phys. 73, 711 (1993).CrossRefGoogle Scholar