Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:27:59.267Z Has data issue: false hasContentIssue false

The amorphization of complex silicates by ion-beam irradiation

Published online by Cambridge University Press:  31 January 2011

Ray K. Eby*
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
Rodney C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131
Robert C. Birtcher
Affiliation:
MSD 212, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439
*
a)Current address: Department of Mineralogy, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada.
Get access

Abstract

Twenty-five silicates were irradiated at ambient temperature conditions with 1.5 MeV Kr+. Critical doses of amorphization were monitored in situ with transmission electron microscopy. The doses required for amorphization are compared with the structures, bond-types, compositions, and physical properties of the silicates using simple correlation methods and more complex multivariate statistical analysis. These analyses were made in order to determine which properties most affect the critical amorphization dose. Simple two-variable correlations indicate that melting point, efficiency of atomic packing, the dimensionality of SiO4 polymerization (DOSP), and bond ionicity have a relationship with critical amorphization dose. However, these relationships are evident only in selected portions of the data set; that is, for silicate phases with a common structure type. A clearer relationship between the silicate properties and critical amorphization dose was determined for the entire data set with multiple linear regression. Several regression models are proposed which describe the variation in amorphization dose. All regression models contain the following properties: (i) melting point; (ii) a structural variable (DOSP, elastic modulus, and/or atomic packing); and (iii) the proportion of Si–O bonding (instead of bond ionicity). The regression models are equivalent, because they represent combinations of similar properties. Notably, density and atomic mass are not controlling properties for the critical amorphization dose. Melting and amorphization by ion irradiation are apparently related processes. Neither melting point nor critical amorphization dose can be predicted by considering only the structure, composition, or bonding of a particular phase. The Si–O bond is the most covalent bond in silicates, and is the “weak link” in the structure with respect to amorphization. Thus, DOSP is also an important property, as the topology of these “weak links” influences a structure's ability to accumulate amorphous regions. The efficiency of atomic packing is related to the process of defect self-recombination during amorphization. The bulk modulus and shear modulus are important variables within the regression models because of their direct relationship to atomic packing.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ion Beam Modification of Insulators, Beam Modification of Mate-rials, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier Science Pub., Amsterdam, 1987), p. 2.Google Scholar
2Clinard, F.W. and Hobbs, L.W., in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (Elsevier Science Pub., Amsterdam, 1986), p. 387.CrossRefGoogle Scholar
3Wang, L. M. and Ewing, R. C., Mater. Res. Soc. Bull. XVII/5, 38 (1992).CrossRefGoogle Scholar
4Ewing, R.C., Chakoumakos, B.C., Lumpkin, G.R., and Murakami, T., Mater. Res. Soc. Bull. XII/4, 58 (1987).CrossRefGoogle Scholar
5Hemley, R.J., Jephcoat, A. P., Mao, H.K., Ming, L.C., and Manghnani, M.H., Nature 334, 52 (1988).CrossRefGoogle Scholar
6Sankaran, H., Sikka, S.K., Sharma, S. M., and Chidambram, R., Phys. Rev. B 38, 170 (1988).CrossRefGoogle Scholar
7Kruger, M.B. and Jeanloz, R., Science 249, 647 (1990).CrossRefGoogle Scholar
8Ewing, R.C. and Lutze, W., Ceram. Int. 17, 287 (1991).CrossRefGoogle Scholar
9Stevanovic, D.V., Thompson, D.A., and Vance, E. R., J. Nucl. Mater. 161, 169 (1989).CrossRefGoogle Scholar
10Weber, W.J., Mansur, L.K., Clinard, F.W. Jr., and Parkin, D.M., J. Nucl. Mater. 184, 1 (1991).CrossRefGoogle Scholar
11Auvray-Gely, M. H., Dunlop, A., and Hobbs, L. W., J. Nucl. Mater. 133/134, 230 (1985).CrossRefGoogle Scholar
12Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J., Am. Miner. 76, 1510 (1991).Google Scholar
13James, K. and Durrani, S.A., Nucl. Tracks 12, 921 (1986).CrossRefGoogle Scholar
14Shiraishi, K., J. Nucl. Mater. 169, 305 (1989).CrossRefGoogle Scholar
15Clark, G J., Marwick, A. D., LeGoues, F., Laibowitz, R. B., Koch, R., and Madakson, P., Nucl. Instrum. Methods Phys. Res. B 32, 405 (1988).CrossRefGoogle Scholar
16White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41 (1989).CrossRefGoogle Scholar
17Pythian, W. J., J. Nucl. Mater. 159, 219 (1988).CrossRefGoogle Scholar
18Follstaedt, D.M., Nucl. Instrum. Methods Phys. Res. B 7/8, 11 (1985).CrossRefGoogle Scholar
19Lechtenberg, T., J. Nucl. Mater. 133/134, 149 (1985).CrossRefGoogle Scholar
20Okamoto, P. R. and Meshii, M. in Science of Advanced Materials, edited by Weidersich, H. and Meshii, M. (ASM INTERNATIONAL, Metals Park, OH, 1988), p. 33.Google Scholar
21Johnson, W.L., Mater. Sci. Eng. 97, 1 (1988).CrossRefGoogle Scholar
22Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiat. Eff. 77, 237 (1983).CrossRefGoogle Scholar
23Howitt, D. G., Chan, H. W., Vance, E. R., DeNatale, J. F., Hood, P. J., and Thompson, D.A., Radiat. Eff. Def. Solids 112, 39 (1990).CrossRefGoogle Scholar
24Cartz, L., Karioris, F. G., and Fournelle, R. A., Radiat. Eff. 54, 57 (1981).CrossRefGoogle Scholar
25Wang, L.M., Eby, R.K., Janeczek, J., and Ewing, R.C., Nucl. Instrum. Methods Phys. Res. B 59/60, 395 (1991).CrossRefGoogle Scholar
26Perez, A. and Thevenard, P., in Ion Beam Modification of Insulators, Beam Modification of Materials, 2, edited by Mazzoldi, P. and Arnold, G. W. (Elsevier Sci. Pub., Amsterdam, 1987), p. 156.Google Scholar
27Thompson, D.A., Radiat. Eff. 56, 105 (1981).CrossRefGoogle Scholar
28Fleischer, R.L., Radiat. Eff. 28, 113 (1976).CrossRefGoogle Scholar
29Toulemonde, M., Balanzat, E., Bouffard, S., and Jousset, J. C., Nucl. Instrum. Methods Phys. Res. B 39, 1 (1989).Google Scholar
30Wang, L. M., Miller, M. L., and Ewing, R. C., in Elec. Microsc. Soc. Am. Proc. 49, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1991), p. 910.Google Scholar
31Weber, W.J., Eby, R.K., and Ewing, R.C., J. Mater. Res. 6, 1334 (1991).CrossRefGoogle Scholar
32Weber, M.J., J. Mater. Res. 5, 2687 (1990).CrossRefGoogle Scholar
33Wang, L. M. and Ewing, R. C., Nucl. Instrum. Methods Phys. Res. B (1992, in press).Google Scholar
34Jones, K.S. and Santana, C.J., J. Mater. Res. 6, 1048 (1991).CrossRefGoogle Scholar
35Eby, R. K., The Amorphization of Silicates by Ion-Beam Irradiation, Ph.D. Dissertation (microfiche, University of New Mexico, Albuquerque, NM 87131, 1992), 166 pages.Google Scholar
36Allen, C. W., Funk, L. L., Ryan, E. A., and Taylor, A., Nucl. Instrum. Methods Phys. Res. B 40/41, 553 (1989).CrossRefGoogle Scholar
37Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
38Liebau, F., Structural Chemistry of Silicates: Structure, Bonding, Classification (Springer-Verlag, Germany, 1985).CrossRefGoogle Scholar
39Papike, J.J., Rev. Geophys. 26, 407 (1988).CrossRefGoogle Scholar
40Papike, J.J., Rev. Geophys. 25, 1483 (1987).CrossRefGoogle Scholar
41Wang, L.M. and Ewing, R.C., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E., and Follstaedt, D.M. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992) (in press).Google Scholar
42Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., and Ewing, R.C., Science 236, 1493 (1987).CrossRefGoogle Scholar
43Proshchenko, E.G., Polezhaev, M., and Khalezova, E.B., Mineral Zhurkh. 9, 41 (1987).Google Scholar
44Hawthorne, F.C.et at, Am. Miner. 76, 370 (1991).Google Scholar
45Deer, W. A., Howie, R. A., and Zussman, J., An Introduction to Rock-Forming Minerals, 12th ed. (John Wiley & Sons, Inc., Great Britain, 1980).Google Scholar
46Fischer, K., Zeit. fur Krist. 129, 222 (1969).CrossRefGoogle Scholar
47Ritsuro, M., Izumi, N., and Kozo, N., Am. Miner. 69, 948 (1984).Google Scholar
48Janeczek, J. and Eby, R. K., Am. Geophys. Union Fall Mtg. Prog. Abstr., EOS suppl. Oct. 29, 554 (1991).Google Scholar
49Pascucci, M.R., Hutchinson, J.L., and Hobbs, L.W., Radiat. Eff. 74, 219 (1983).CrossRefGoogle Scholar
50Macaulay-Newcombe, R. G., Thompson, D.A., Davies, J. A., and Stevanovic, D. V., Nucl. Instrum. Methods Phys. Res. B 46, 180 (1990).CrossRefGoogle Scholar
51Naguib, H.M. and Kelly, R., Radiat. Eff. 25, 1 (1975).Google Scholar
52Batsanov, S. S., Russ. Chem. Rev. 37, 332 (1968).CrossRefGoogle Scholar
53Matzke, H.j., Can. J. Phys. 46, 621 (1968).CrossRefGoogle Scholar
54Hobbs, L. W., Ultramicroscopy 23, 339 (1987).CrossRefGoogle Scholar
55Shannon, R.D., Acta Cryst. A32, 751 (1976).CrossRefGoogle Scholar
56Koike, J., Okamoto, P. R., Rehn, L.E., and Meshii, M., Metall. Trans. A21, 1799 (1990).CrossRefGoogle Scholar
57Bhadra, R., Pearson, J., Okamoto, P.R., Rehn, L.E., and Grimsditch, M., Phys. Rev. B 38, 12656 (1988).CrossRefGoogle Scholar
58Carmichael, R. S., in CRC Handbook of Physical Properties of Rocks (CRC Press, Boca Raton, FL, 1982), Vol. 2/3.Google Scholar
59Birsch, F., in Handbook of Physical Constants, edited by Clark, Sydney P. Jr., (GSA Memoir 97, GSA, Inc., 1966), p. 97.CrossRefGoogle Scholar
60Robie, R. A., Hemingway, B. S., and Fisher, J. R., USGS Bull. 1452, 456 pp. (1978).Google Scholar
61Morgan, D.V. and Vliet, D.V., Contemp. Phys. 11, 173 (1970).CrossRefGoogle Scholar
62Myers, R. H., Classical and Modern Regression with Applications (PWS Publishers, USA, 1986).Google Scholar