Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T20:15:35.119Z Has data issue: false hasContentIssue false

Amorphous and nanocrystalline Fe–Ti prepared by ball milling

Published online by Cambridge University Press:  03 March 2011

L. Zaluski
Affiliation:
Centre for the Physics of Materials, McGill University, 3600 University Street, Montréal, Qubec, Canada H3A 2T8
P. Tessier
Affiliation:
Centre for the Physics of Materials, McGill University, 3600 University Street, Montréal, Qubec, Canada H3A 2T8
D.H. Ryan
Affiliation:
Centre for the Physics of Materials, McGill University, 3600 University Street, Montréal, Qubec, Canada H3A 2T8
C.B. Doner
Affiliation:
Centre for the Physics of Materials, McGill University, 3600 University Street, Montréal, Qubec, Canada H3A 2T8
A. Zaluska
Affiliation:
Centre for the Physics of Materials, McGill University, 3600 University Street, Montréal, Qubec, Canada H3A 2T8
J.O. Ström-Olsen
Affiliation:
Centre for the Physics of Materials, McGill University, 3600 University Street, Montréal, Qubec, Canada H3A 2T8
M.L. Trudeau
Affiliation:
IREQ–Institut de recherche d'Hydro-Québec, Technologie des matériaux, Varenes, Québec, Canada J3X 1S1
R. Schulz
Affiliation:
IREQ–Institut de recherche d'Hydro-Québec, Technologie des matériaux, Varenes, Québec, Canada J3X 1S1
Get access

Abstract

Nanocrystalline FeTi has been prepared in two ways: by ball milling the intermetallic compound and mechanically alloying a mixture of the elemental powders. The materials obtained in each case are identical. The reaction proceeds via the formation of interfacial β–Ti(Fe) which then grows to include all of the material present. Oxygen levels above 3 at. % suppress this reaction and lead to the formation of amorphous Fe–Ti.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Reilly, J. J. and Wiswall, R. H. Jr., Inorg. Chem. 13, 218 (1974).Google Scholar
2Trudeau, M. L., Schulz, R., Zaluski, L., Hosatte, S., Ryan, D. H., Doner, C. B., Tessier, P., Ström-Olsen, J. O., and Van Neste, A., Mater. Sci. Forum 8990 (1993, in press).Google Scholar
3Zaluski, L., Hosatte, S., Tessier, P., Ryan, D. H., Ström-Olsen, J. O., Trudeau, M. L., and Schulz, R., J. Alloys and Compounds (1993, in press).Google Scholar
4Chu, B. L., Lee, S. M., and Perng, T. P., Int. J. Hydrogen Energy 16, 413 (1991).CrossRefGoogle Scholar
5Eckert, J., Schultz, L., and Urban, K., J. Non-Cryst. Solids 172, 90 (1991).Google Scholar
6Dolgin, D. P., Vanek, M. A., McGory, T., and Ham, D. J., J. Non-Cryst. Solids 87, 281 (1986).CrossRefGoogle Scholar
7Brüning, R., Altounian, Z., Ström-Olsen, J. O., and Schultz, L., Mater. Sci. Eng. 97, 317 (1988).CrossRefGoogle Scholar
8Mituzani, U. and Lee, C. H., J. Mater. Sci. 25, 399 (1990).Google Scholar
9Yavari, A. R., Desré, P., and Bordeaux, F., Colloq. Phys. C 4, 23 (1990).Google Scholar
10Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).Google Scholar
11Murray, J. L., Bull. Alloy Phase Diagrams 2, 320 (1981).Google Scholar
12Ray, R., Giessen, B. C., and Grant, N. J., Metall. Trans. 3, 627 (1972).Google Scholar
13De Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (Elsevier Science Publishers, New York, 1988), pp. 7981.Google Scholar
14Benjamin, J. S. and Volin, T. E., Metall. Trans. 5, 1929 (1974).CrossRefGoogle Scholar
15Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 287 (1985).CrossRefGoogle Scholar
16Schultz, L., Philos. Mag. B 1, 453 (1990).CrossRefGoogle Scholar
17Petzoldt, F., Scholz, B., and Kunze, H-D., Mater. Sci. Eng. 97, 25 (1988).CrossRefGoogle Scholar
18Batalla, E., Ström-OIsen, J. O., Altounian, Z., Boothroyd, D., and Harris, R., J. Mater. Res. 1, 765 (1986).CrossRefGoogle Scholar