Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T03:43:56.807Z Has data issue: false hasContentIssue false

Amorphous iron oxide prepared by microwave heating

Published online by Cambridge University Press:  31 January 2011

Oleg Palchik
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
Israel Felner
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, Israel
Gina Kataby
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
Aharon Gedanken
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
Get access

Abstract

Amorphous iron oxide (Fe2O3) was prepared by the pyrolysis of iron pentacarbonyl [Fe(CO)5] in a modified domestic microwave oven in refluxing chlorobenzene as a solvent under air. The reaction time was 20 min. Partially separated particles of iron oxide, 2–3 nm in diameter, were obtained. The other part showed aggregated spheres with a diameter of 25–40 nm. Differential scanning calorimetry measurements showed an amorphous/crystalline phase transition at about 250 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cornell, R.M. and Schwertmann, U., The Iron Oxides (VCH, Weinheim, Germany, 1996).Google Scholar
2. Livage, J., J. Phys. (Paris) supplement au no. 10, tome 42(C4), 981 (1981).CrossRefGoogle Scholar
3. Bate, G., Ferromagnetic Materials, edited by Wohlfarth, E.P. (North-Holland Amsterdam, New York, 1980), Vol. 2, p. 405.Google Scholar
4. Murawski, L., Chung, C.H., and Mackenzie, J.D., J. Non-Cryst. Solids 32, 91 (1979).CrossRefGoogle Scholar
5. Curry-Hyde, H.E., Musch, H., and Baiker, A., Appl. Catal. 65, 211 (1990).Google Scholar
6. Cao., H. and Suib, S.L.,. J. Am. Chem. Soc. 116, 5334 (1994).Google Scholar
7. Sugimoto, M., J. Magn. Magn. Mater. 133, 460 (1994).CrossRefGoogle Scholar
8. Tanaka, K., Hirao, K., and Soga, N., J. Appl. Phys. 69, 7752 (1991).Google Scholar
9. Sugimoto, M. and Hiratsuka, N., J. Magn. Magn. Mater. 31/34, 1533 (1983).Google Scholar
10. Steger, W.E., Landmesser, H., Boettcher, U., and Schubert, E., J. Mol. Struct. 217, 341 (1990).CrossRefGoogle Scholar
11. Pashmakov, B., Claflin, B., and Fritzche, H., Solid State Commun. 86, 619 (1993).CrossRefGoogle Scholar
12. Kandory, K. and Ishikawa, T., Langmuir 7, 2213 (1991).CrossRefGoogle Scholar
13. Processing of Structural Metals by Rapid Solidification, edited by F.W. Froes and S.J. Savage (American Society of Metals, Metals Park, OH, 1987).Google Scholar
14. Cao, X., Prozorov, R., Koltypin, Yu., Kataby, G., and Gedanken, A., J. Mater. Res. 12, 402 (1997).CrossRefGoogle Scholar
15. Dhas, N.A. and Gedanken, A., J. Phys. Chem. 101, 9495 (1997).Google Scholar
16. Dhas, N.A. and Gedanken, A., Chem. Mater. 9, 3159 (1997).CrossRefGoogle Scholar
17. Suslick, K.S., Choe, S.B., Cichowlas, A.A., and Grinstaff, M.W., Nature 353, 414 (1991).Google Scholar
18. Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Labarge, L., and Rousell, J., Tetrahedron Lett. 27, 279 (1986).Google Scholar
19. Giguerre, R.J., Bray, T.L., Duncan, S.M., and Majetich, G., Tetrahedron Lett. 27, 4945 (1986).Google Scholar
20. a) Caddick, S., Tetrahedron 51, 10403 (1995);CrossRefGoogle Scholar
b) Bose, A.K., Chemtech September, 18 (1997).Google Scholar
21. a) Mingos, D.M.P, Adv. Mater. 5, 857 (1995);CrossRefGoogle Scholar
b) Gasgneir, M., Loupy, A., Albert, L., Derouet, J., Beaury, L., Petit, A., and Jacquault, P., J. Alloys Compd. 198, 73 (1993);CrossRefGoogle Scholar
c) Rao, K.J., Ramesh, P.D., Vaidhyanathan, B., and Ganguli, M., J. Mater. Res. 9, 3025 (1994);Google Scholar
d) Barron, A.R., Landry, C.C., and Lockwood, J., Chem. Mater. 7, 699 (1995);Google Scholar
e) Rao, K.J., Vaidhyanathan, B., and Ganguli, M., Mater. Res. Bull. 30, 1173 (1995).CrossRefGoogle Scholar
22. Slangen, P.M., Jansen, J.C., and van Bekkum, H., Zeolites 18, 63 (1997).Google Scholar
23. Matsumura-Inoue, T. and Tanabe, M., Chem. Lett. 2443 (1994).CrossRefGoogle Scholar
24. Feigel, F., Spot Tests, Inorganic identifiication (Elsevier, New York, 1954), Vol. I, pp. 154155.Google Scholar
25. Elliot, S.R., Physics of Amorphous Materials (Longman, London, 1984), pp. 350357.Google Scholar
26. Greenwood, N.N. and Gibb, T.C., Mossbauer Spectroscopy (Chapman and Hall, London, 1971), p. 251.CrossRefGoogle Scholar
27. McIntyre, N.S. and Zetaruk, D.G., Anal. Chem. 49, 1521 (1977).CrossRefGoogle Scholar
28. Lu, W., Yang, D., Sun, Y., Guo, Y., Xie, S., and Li, H., Appl. Surf. Sci. 147, 39 (1999).CrossRefGoogle Scholar