Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T16:35:47.634Z Has data issue: false hasContentIssue false

An attempt to prepare carbon nitride by thermal plasma chemical vapor deposition from graphite and nitrogen

Published online by Cambridge University Press:  31 January 2011

S. Matsumoto
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-city 305, Japan
K. K. Chattopadhyay
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-city 305, Japan
M. Mieno
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-city 305, Japan
T. Ando
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba-city 305, Japan
Get access

Extract

RF induction thermal plasma was applied to the chemical vapor deposition of carbon nitride from graphite powders and Ar–N2 gas at about 1 atm. Low-density and fragile amorphous powder-like bulk deposits whose color is light yellow were obtained. Elementary analysis by a combustion method and x-ray photoelectron spectroscopy showed that the N/C ratio is higher than that of stoichiometric C3N4. Also, a large amount of hydrogen and oxygen are included, which seems to be due to the absorption of moisture and oxygen after exposure to air. Infrared absorption spectra suggest the presence of sp CN and sp2 CN bonds, and nitrogen-containing polycondensed ring structures. Thermogravimetric analysis with mass spectroscopy shows that the deposits decompose almost completely at 800 °C, suggesting that the polycondensed rings are not large and not well cross-linked.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Liu, A. M. and Cohen, M. L., Science 245, 841 (1989).CrossRefGoogle Scholar
2.Kaufman, J. H., Metin, S., and Saperstein, D. D., Phys. Rev. B 39, 13053 (1989).CrossRefGoogle Scholar
3.Tong, C. J., Sivertsen, J. M., Judy, J. H., and Chang, C., J. Mater. Res. 5 2490 (1990).CrossRefGoogle Scholar
4.Chen, M. Y., Lin, X., Dravid, V. P., Chung, Y. W., Wong, M. S., and Sproul, W. D., Surf. Coat. Technol. 54/54, 360 (1992).CrossRefGoogle Scholar
5.Fujimoto, F. and Ogata, K., Jpn. J. Appl. Phys. 32, L420 (1993).Google Scholar
6.Niu, C., Lu, Y. Z., and Lieber, C. M., Science 261, 334 (1993).Google Scholar
7.Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Labalais, J. W., Phys. Rev. Lett. 73, 118 (1994).CrossRefGoogle Scholar
8.Han, H. X. and Feldman, B. J., Solid State Commun. 65, 921 (1988).CrossRefGoogle Scholar
9.Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I. C., Phys. Rev. B 49, 5034 (1994).CrossRefGoogle Scholar
10.Matsumoto, O., Kotaki, T., Shikano, H., Takemura, K., and Tanaka, S., J. Electrochem. Soc. 141, L16 (1994).CrossRefGoogle Scholar
11.Yen, T. Y. and Chou, C. P., Solid State Commun. 95, 281 (1995).CrossRefGoogle Scholar
12.Su, X. W., Song, H. W., Cui, F. Z., and Li, W. Z., J. Phys.: Conds. Matter 7, L517 (1995).Google Scholar
13.Gu, Y. S., Pan, L. Q., Chang, X. R., and Tian, Z. Z., J. Mater. Sci. Lett. 14, 1355 (1995).Google Scholar
14.Zhang, Z. B., Li, Y. A., Xie, S. S., and Yang, G. Z., J. Mater. Sci. Lett. 14, 1742 (1995).Google Scholar
15.Zhang, Y. F., Zhou, Z. H., and Li, H. L., Appl. Phys. Lett. 68, 634 (1996).CrossRefGoogle Scholar
16.Su, X. W., Song, H. W., Zhang, Q. Y., and Cui, F. Z., Nucl. Instrum. Methods Phys. Res. B 111, 59 (1996).Google Scholar
17.Sharma, A. K., Ayyub, P., Multani, M. S., Adhi, K. P., Ogale, S. B., Sunderaraman, M., Upadhyay, D. D., and Banerjee, S., Appl. Phys. Lett. 69, 3489 (1996).CrossRefGoogle Scholar
18.Chen, L. C., Yang, C. Y., Bhusari, D. M., Chen, K. H., Lin, M. C., Lin, J. C., and Chuang, T. J., Diamond Relat. Mater. 5, 514 (1996).Google Scholar
19.Chen, Y., Guo, L., Chen, F., and Wang, E. G., J. Phys.: Conds. Matter 8, L685 (1996).Google Scholar
20.Xie, E. Q. and Matsumoto, S., unpublished.Google Scholar
21.Matsumoto, S., unpublished data.Google Scholar
22.Matsumoto, S., Hosoya, I., Manabe, Y., and Hibino, Y., Pure Appl. Chem. 64, 75 (1992).CrossRefGoogle Scholar
23.Nakayama, N., Tsuchiya, Y., Tamada, S., Kosuge, K., Nagata, S., Takahiro, K., and Yamaguchi, S., Jpn. J. Appl. Phys. 32, L1465 (1993).CrossRefGoogle Scholar
24.Zhao, X. A., Ong, C. W., Tsang, Y. G., Wong, Y. W., Chen, P. W., and Choy, C. L., Appl. Phys. Lett. 66, 2652 (1995).CrossRefGoogle Scholar
25.Cuomo, J. J., Leary, P. A., Yu, D., Reuter, W., and Frish, M., J. Vac. Sci. Technol. 16, 299 (1979).Google Scholar
26.Rossi, F., André, B., van Veen, A., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M. P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).CrossRefGoogle Scholar
27.Bousetta, A., Lu, M., and Bensaoula, A., J. Vac. Sci. Technol. A 13, 1639 (1995).Google Scholar