Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-02T16:17:22.348Z Has data issue: false hasContentIssue false

An efficient single-mode Nd3+ fiber laser prepared by the sol-gel method

Published online by Cambridge University Press:  03 March 2011

Fengqing Wu
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
David Machewirth
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
Elias Snitzer
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
George H. Sigel Jr.
Affiliation:
Fiber Optic Materials Research Program, Rutgers University, Piscataway, New Jersey 08855-0909
Get access

Abstract

High quality Nd-doped single-mode fibers have been prepared by using a sol-gel process. The longest fluorescence lifetime measured was 520 μs in an Al: SiO2 glass fiber containing 0.47 wt.% neodymium oxide. An efficient neodymium fiber laser with a slope above threshold of 42% was successfully demonstrated with the sol-gel prepared Nd-doped single-mode fibers as a fiber laser oscillator.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stone, J. and Burrus, C. A., Appl. Phys. Lett. 23 (7), 388389 (1973).CrossRefGoogle Scholar
2Reekie, L., Mears, R. J., Poole, S. B., and Payne, D. N., J. Lightwave Technol. LT–4 (7), 956960 (1986).CrossRefGoogle Scholar
3Tumminelli, R. P., McCollum, B. C., and Snitzer, E., J. Lightwave Technol. 8 (11), 1680/1683 (1990).CrossRefGoogle Scholar
4Pope, E. J. A. and Mackenzie, J. D., J. Non-Cryst. Solids 106 (1/3), 236 (1988).CrossRefGoogle Scholar
5Pope, E. J. A. and Mackenzie, J. D., J. Am. Ceram. Soc. 76 (5), 13251328 (1993).CrossRefGoogle Scholar
6Fujiyama, T., Yokoyama, T., and Hori, M., J. Non-Cryst. Solids 135 (1/3), 198 (1991).CrossRefGoogle Scholar
7Moreshead, W. V., Nogués, J. R., and Krabill, R. H., J. Non-Cryst. Solids 121, 267/272 (1990).CrossRefGoogle Scholar
8Thomas, I. M., Payne, S. A., and Wilke, G. D., J. Non-Cryst. Solids 151, 183/194 (1992).CrossRefGoogle Scholar
9Wu, F., Puc, G., Foy, P., Snitzer, E., and Sigel, G. H. Jr., Mater. Res. Bull. XXVIII, 637644 (1993).CrossRefGoogle Scholar
10Snitzer, H. Po. E., Tumminelli, R., Zenteno, L., Hakimi, F., Cho, N. M., and Haw, T., Proc. OFC'89, Houston, TX, Postdeadline paper PD7.Google Scholar
11Scrivener, P. L., Maton, P. D., Appleyard, A. P., and Tarbox, E. J., Electron. Lett. 26 (13), 872/873 (1990).CrossRefGoogle Scholar
12Puc, G., private communication.Google Scholar