Article contents
An instrumented indentation method for evaluating the effect of hydrostatic pressure on the yield strength of solid polymers
Published online by Cambridge University Press: 17 November 2014
Abstract
The yield behavior of solid polymers may be influenced by the hydrostatic pressure, strain rate, and temperature. In the present work, we focus on evaluating the effect of hydrostatic pressure on the yield strength by instrumented indentation. Using dimensional analysis and finite element analysis, two analytical expressions were derived to relate the indentation data to the plastic properties, and a method for extracting the coefficient of internal friction which reflects the effect of hydrostatic pressure on the yield strength was established. Applications were illustrated on polypropylene (PP), polycarbonate (PC), and unplasticized polyvinyl chloride (UPVC). The coefficient of internal friction determined by this indentation method is 0.20 ± 0.02 for PP, 0.07 ± 0.01 for PC, and 0.10 ± 0.01 for UPVC, which are in good agreement with the values reported in the literature. This demonstrates the proposed indentation method which is useful to evaluate the effect of hydrostatic pressure on the yield strength of solid polymers.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2014
References
REFERENCES
- 3
- Cited by