Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T21:20:52.037Z Has data issue: false hasContentIssue false

Analytic embedded atom method model for bcc metals

Published online by Cambridge University Press:  31 January 2011

R. A. Johnson
Affiliation:
Materials Science Department, University of Virginia, Charlottesville, Virginia 22901
D. J. Oh
Affiliation:
Materials Science Department, University of Virginia, Charlottesville, Virginia 22901
Get access

Abstract

The requirements for fitting bcc metals within the EAM format are discussed and, for comparative purposes, the EAM format is cast in a normalized form. A general embedding function is defined and an analytic first- and second-neighbor model is presented. The parameters in the model are determined from the cohesive energy, the equilibrium lattice constant, the three elastic constants, and the unrelaxed vacancy formation energy. Increasing the elastic constants, increasing the elastic anisotropy ratio, and decreasing the unrelaxed vacancy formation energy favor stability of a close-packed lattice over bcc. A stable bcc lattice relative to close packing is found for nine bcc metals, but this scheme cannot generate a model for Cr because the elastic constants of Cr require a negative curvature of the embedding function.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
2Ackland, G.J., Tichy, G., Vitek, V., and Finnis, M. W., Philos. Mag. A 56, 735 (1987).CrossRefGoogle Scholar
3Johnson, R. A., Phys. Rev. B 37, 3924 (1988).CrossRefGoogle Scholar
4Oh, D. J. and Johnson, R. A., J. Mater. Res. 3, 471 (1988).CrossRefGoogle Scholar
5Daw, M. S. and Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
6Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
7Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984); erratum Philos. Mag. A 53, 161 (1986).CrossRefGoogle Scholar
8Harder, J.M. and Bacon, D. J., Philos. Mag. A 54, 651 (1986).CrossRefGoogle Scholar
9Ackland, G. J. and Thetford, R., Philos. Mag. A 56, 15 (1987).CrossRefGoogle Scholar
10Foiles, S.M., Phys. Rev. B 32, 3409 (1986).Google Scholar
11Oh, D.J. and Johnson, R.A., in Atomistic Simulation of Materials: Beyond Pair Potentials, 1988 World Materials Congress, ASM, to be published by Plenum Press.Google Scholar
12Johnson, R. A., Phys. Rev. 134, A1329 (1964).CrossRefGoogle Scholar
13Johnson, R.A., Phys. Rev. 145, 423 (1966).CrossRefGoogle Scholar
14Baskes, M. I., Phys. Rev. Lett. 59, 2666 (1987).CrossRefGoogle Scholar
15Banerjea, A. and Smith, J. R., Phys. Rev. B 37, 6632 (1988).CrossRefGoogle Scholar
16Rose, J.H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B 29, 2963 (1984).CrossRefGoogle Scholar
17Puska, M. J., Nieminen, R. M., and Manninen, M., Phys. Rev. B 24, 3037 (1981).CrossRefGoogle Scholar
18American Institute of Physics Handbook (McGraw-Hill, New York, 1957).Google Scholar
19Kittel, Charles, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), p. 96.Google Scholar
20Simmons, Gene and Wang, Herbert, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (M.I.T. Press, Cambridge, MA, 1971). An average of the more recent data has been used.Google Scholar
21Feder, R., Phys. Rev. B 2, 828 (1970).CrossRefGoogle Scholar
22Feder, R. and Charbnau, H., Phys. Rev. 149, 464 (1966).CrossRefGoogle Scholar
23McDonald, R.A., Shukla, R.C., and Kahaner, D.K., Phys. Rev. B 29, 6489 (1984).CrossRefGoogle Scholar
24Maier, K., Peo, M., Saile, B., Schaefer, H. E., and Seeger, A., Philos. Mag. A 40, 701 (1979).CrossRefGoogle Scholar
25Tietze, M., Takaki, S., Schwirtlich, I. A., and Schultz, H., in Point Defects and Defect Interactions in Metals, edited by Takamura, Jin-Ichi, Doyama, Masao, and Kiritani, Michio (North Holland, Amsterdam, 1982), p. 266.Google Scholar
26Ziegler, R. and Schaefer, H. E., in Vacancies and Interstitials in Metals and Alloys, edited by Abromeit, C. and Wollenberger, H. (Trans. Tech., Switzerland, 1987), p. 145.Google Scholar
27Furderer, K., Doring, K-P., Gladisch, M., Haas, N., Herlach, D., Major, J., Mundinger, H-J., Rosenkranz, J., Schafer, W., Schimmele, L., Schmolz, M., Schwarz, W., and Seeger, A., in Vacancies and Interstitials in Metals and Alloys, edited by Abromeit, C. and Wollenberger, H. (Trans. Tech., Switzerland, 1987), p. 125.Google Scholar
28Schepper, L. De, Knuyt, G., Stals, L. M., Segers, D., Dorikens-Vanpraet, L., Dorikens, M., and Moser, P., in Vacancies and Interstitials in Metals and Alloys, edited by Abromeit, C. and Wollenberger, H. (Trans. Tech., Switzerland, 1987), p. 131.Google Scholar