Published online by Cambridge University Press: 31 January 2011
Y2Ba4CuNbO12 (Y-24Nb1) and silver (Ag) are recognized as potential candidates for improving both flux pinning and the mechanical properties of bulk rare earth (RE)–Ba–Cu–O [(RE)BCO] high-temperature superconductors (HTS). Recent attempts to add Ag2O to superconducting Y-123/Y2Ba4CuNbO12 composites, however, have produced a highly anisotropic morphology of Ag particles in samples grown by top-seeded melt growth (TSMG). This morphology has been attributed to strong particle pushing effects due to the presence of Y-24Nb1 nanoparticles in the composite microstructure. An investigation of the formation of anisotropic Ag particles in the YBCO bulk microstructure indicates that these pushing effects generate different morphological microstructural zones in the composite. These include a zone free of inclusions other than acicular Ag particles, a zone of segregated additives (i.e., Y-24Nb1, Y-211, and Ag), and a zone containing fine Ag and other particles distributed uniformly throughout the local microstructure. The particle pushing/trapping theory has been used to explain these extraordinary features of the distribution of Ag inclusions. The superconducting and mechanical properties of samples containing very fine silver inclusions are also discussed briefly.