Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T01:43:28.177Z Has data issue: false hasContentIssue false

Anomalous electronic transport in metallic nanomultilayer at all length scales: Influence of grain boundary and interface boundary

Published online by Cambridge University Press:  31 January 2011

M.X. Liu
Affiliation:
State-Key Laboratory of Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
K.W. Xu*
Affiliation:
State-Key Laboratory of Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: kwxu@mail.xjtu.edu.cn; mxliu1981@gmail.com
Get access

Abstract

Scale-dependent microstructure and electronic transportation of Ni/Al-type nanomultilayers as a function of the bilayers number, the modulated ratio, and the periodicity were investigated. The deposited multilayers have anisotropic nanocrystalline structure and asymmetrical interfaces. This special interfacial feature is the result of asymmetrical diffusion of Ni to Al lattice near the Ni–Al interface. Anomalous resistivity enhancement increases with decreasing both the periodicity and the modulated ratio, but is insensitive to the number of bilayers. Accounting for the effects of grain boundary and interface boundary, the dominative mechanism at distinct length scales can be interpreted with the modified model of those of Fuchs–Sondheimer and Mayadas–Shatzkes. Especially for the thinnest film with smallest modulated ratio, the intermixing effect turns out to be the crucial mechanism in the electronic transportation of metallic nanomultilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Meyerovich, A.E.Ponomarev, I.V.: Quantum-size effect in conductivity of multilayer metal films. Phys. Rev. B 67, 165411 2003CrossRefGoogle Scholar
2Maaroof, A.I.Evans, B.L.: Onset of electrical conduction in Pt and Ni films. J. Appl. Phys. 76, 1047 1994CrossRefGoogle Scholar
3Ene, C.B., Schmitz, G., Kirchheim, R.Hütten, A.: Stability and thermal reaction of GMR NiFe/Cu thin films. Acta Mater. 53, 3383 2005CrossRefGoogle Scholar
4Fuchs, K.: The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambridge Philos. Soc. 34, 100 1938CrossRefGoogle Scholar
5Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 1, 1 1952CrossRefGoogle Scholar
6Mayadas, A.F.Shatzkes, M.: Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces. Phys. Rev. B 1, 1382 1970CrossRefGoogle Scholar
7Barnaś, J.Bruynseraede, Y.: Electronic transport in ultrathin magnetic multilayers. Phys. Rev. B 53, 5449 1996CrossRefGoogle ScholarPubMed
8Vo, V.T., Koon, K.L., Hu, Z.R., Dharmasiri, C.N., Subramaniam, S.C.Rezazadeh, A.A.: Electrical isolation, thermal stability and rf loss in a multilayer GaAs planar doped barrier diode structure bombarded by H+ and Fe+ ions. Appl. Phys. Lett. 84, 3073 2004CrossRefGoogle Scholar
9Yang, Y., Zhu, J.G., White, R.M.Asheghi, M.: Field-dependent thermal and electrical transports in Cu/CoFe multilayer. J. Appl. Phys. 99, 063703 2006CrossRefGoogle Scholar
10Barnaś, J., Fuss, A., Camley, R.E., Grünberg, P.Zinn, W.: Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. Phys. Rev. B 42, 8110 1990CrossRefGoogle ScholarPubMed
11Meyerovich, A.E.Ponomarev, I.V.: Surface roughness and size effects in quantized films. Phys. Rev. B 65, 155413 2002CrossRefGoogle Scholar
12Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C.M.Schuller, I.K.: Anomalous behavior of surface acoustic waves in Cu/Nb superlattices. Phys. Rev. Lett. 48, 166 1982CrossRefGoogle Scholar
13Rennert, P.Brzezinski, A.: Solution of the Boltzmann equation for multilayer systems. Phys. Rev. B 52, 1612 1995CrossRefGoogle ScholarPubMed
14Trivedi, N.Ashcroft, N.W.: Quantum-size effects in transport properties of metallic films. Phys. Rev. B 38, 12298 1988CrossRefGoogle ScholarPubMed
15Durkan, C.Welland, M.E.: Size effects in the electrical resistivity of polycrystalline nanowires. Phys. Rev. B 61, 14215 2000CrossRefGoogle Scholar
16Nallamshetty, K.Angadi, M.A.: Transport properties of Cu/Mn multilayer films at low temperatures. J. Appl. Phys. 72, 4732 1992CrossRefGoogle Scholar
17Kästle, G., Boyen, H.G., Schröder, A., Plettl, A.Ziemann, P.: Size effect of the resistivity of thin epitaxial gold films. Phys. Rev. B 70, 165414 2004CrossRefGoogle Scholar
18Suresh, N., Phase, D.M., Gupta, A.Chaudhari, S.M.: Electron density fluctuations at interfaces in Nb/Si bilayer, trilayer, and multilayer films: An x-ray reflectivity study. J. Appl. Phys. 87, 7946 2000CrossRefGoogle Scholar
19Vashaee, D.Shakouri, A.: Electronic and thermoelectric transport in semiconductor and metallic superlattices. J. Appl. Phys. 95, 1233 2004CrossRefGoogle Scholar
20Al-Share, M.A.El-Haija, A.J. Abu: I-V characteristics of ultrathin Ag–SiO multilayer structures. Phys. B (Amsterdam) 315, 157 2002CrossRefGoogle Scholar
21Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 1998CrossRefGoogle Scholar
22Rothhaar, U., Oechsner, H., Scheib, M.Müller, R.: Compositional and structural characterization of temperature-induced solid-state reactions in Al/Ni multilayers. Phys. Rev. B 61, 974 2000CrossRefGoogle Scholar
23Fan, Z.F., Mohammad, S.N., Kim, W., Aktas, Ö., Botchkarev, A.E.Morkoc, H.: Very low resistance multilayer Ohmic contact to n-GaN. Appl. Phys. Lett. 68, 1672 1996CrossRefGoogle Scholar
24Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E.Weihs, T.P.: Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 2000CrossRefGoogle Scholar
25Lan, W., Zhang, M., Dong, G.B., Wang, Y.Y.Yan, H.: Improvement of CuAlO2 thin film electrical conduction by the anisotropic conductivity. J. Mater. Res. 22, 3338 2007CrossRefGoogle Scholar
26Fonda, E., Petroff, F.Traverse, A.: Structural study of the Al/Ni interface in ultrathin polycrystalline multilayers. J. Appl. Phys. 93, 5937 2003CrossRefGoogle Scholar
27Klug, H.P.Alexander, L.E.: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.Wiley New York 1974 662Google Scholar
28Hasegawa, S., Tong, X., Takeda, S., Sato, N.Nagao, T.: Structures and electronic transport on silicon surfaces. Prog. Surf. Sci. 60, 89 1999CrossRefGoogle Scholar
29Phillips, M.A., Clemens, B.M.Nix, W.D.: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51, 3171 2003CrossRefGoogle Scholar
30Parkin, S.S.P., Mansour, A.Felcher, G.P.: Antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr multilayers: Dependence on number of Fe layers. Appl. Phys. Lett. 58, 1473 1991CrossRefGoogle Scholar
31Gurvitch, M.: Resistivities and mean free paths in individual layers of a metallic multilayered structure. Phys. Rev. B 34, 540 1986CrossRefGoogle ScholarPubMed
32Liu, H.D., Zhao, Y.P., Ramanath, G., Murarka, S.P.Wang, G.C.: Thickness dependent electrical resistivity of ultrathin (<40 nm) Cu films. Thin Solid Films 384, 151 2001CrossRefGoogle Scholar
33Sinha, M.K., Mukherjee, S.K., Pathak, B., Paul, R.K.Barhai, P.K.: Effect of deposition process parameters on resistivity of metal and alloy films deposited using anodic vacuum arc technique. Thin Solid Films 515, 1753 2006CrossRefGoogle Scholar
34Warda, K., Wojtczak, L., Baldomir, D., Pereiro, M.Arias, J.: An extended Boltzmann formalism for transport description in thin Fe–Cr–Fe trilayers. Phys. Status Solidi 3, 73 2006CrossRefGoogle Scholar
35Ikeda, K., Kobayashi, K.Fujimoto, M.: Multilayer nanogranular magnetic thin films for GHz applications. J. Appl. Phys. 92, 5395 2002CrossRefGoogle Scholar
36Lu, K.: Synthesis of nanocrystalline materials from amorphous solids. Adv. Mater. 11, 1127 19993.0.CO;2-L>CrossRefGoogle Scholar
37Yang, Y., Liu, W.Asheghi, M.: Thermal and electrical characterization of Cu/CoFe superlattices. Appl. Phys. Lett. 84, 3121 2004CrossRefGoogle Scholar
38Hu, S.Y.Chen, L.Q.: Spinodal decomposition in a film with periodically distributed interfacial dislocations. Acta Mater. 52, 3069 2004CrossRefGoogle Scholar
39Chang, S.Y., Chen, C.F., Lin, S.J.Kattamis, T.Z.: Electrical resistivity of metal matrix composites. Acta Mater. 51, 6291 2003CrossRefGoogle Scholar
40Aurongzeb, D., Holtz, M., Berg, J.M., Chandolu, A.Temkin, H.: The influence of interface roughness on electrical transport in nanoscale metallic multilayers. J. Appl. Phys. 98, 063708 2005CrossRefGoogle Scholar