Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T16:31:56.406Z Has data issue: false hasContentIssue false

Aqueous processing of SiC green sheets II: Binder and plasticizer

Published online by Cambridge University Press:  31 January 2011

J. X. Zhang
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
D. L. Jianga*
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
S.H. Tan
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
L. H. Gui
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
M. L. Ruan
Affiliation:
The State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, 200050 Shanghai, P. R. China
*
a)Address all correspondence to this author.
Get access

Abstract

Well-dispersed SiC slurries in the presence of binder and plasticizer were prepared and investigated in this series of work. In this part, poly(vinyl alcohol) (PVA) 1788 was investigated as a potential binder for aqueous tape casting process. The minimum amount of binder was determined through a primary calculation. Effects of the binder on SiC slurries properties were analyzed in term of zeta potential measurement and rheological test. Coupled with PEI as dispersant and glycerol as plasticizer, they lead to homogeneous systems which seem compatible. The suspensions (formulated with 47.9 wt% SiC powder, 1 wt% dispersant, 3.5 wt% binder, and 3.5 wt% plasticizer) exhibited a shear-thinning behavior with a very limited time-dependent character. After tape casting and drying process, the properties of green tapes were evaluated in term of solid content and gap height. The optimal solid content of SiC was found to be near 22.25 vol%, and the gap height, near 200 μm. The microstructure of green tape was characterized by TEM. Results showed that preparation of homogeneous green tapes with relative densities at about 51 vol% was feasible.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hotza, D. and Greil, P., Mater. Sci. Eng. A 202, 206 (1995).CrossRefGoogle Scholar
2.Moreno, R., Am. Ceram. Soc. Bull. 71, 1647 (1992).Google Scholar
3.Gurak, N.R., Josty, P.L., and Thompson, R.J., Am. Ceram. Soc. Bull. 66, 1495 (1987).Google Scholar
4.Onada, G.Y. Jr., in Ceramic Processing Before Firing edited by Onada, G. Jr., and Hench, L.L. (Wiley, New York, 1978), pp. 235251.Google Scholar
5.Doreau, F., Tari, G. et al. J. Eur. Ceram. Soc. 19, 2967 (1999).CrossRefGoogle Scholar
6.Gutierrez, C.A. and Moreno, R., Mater. Bull. 36, 2059 (2001).CrossRefGoogle Scholar
7.Passalacqua, E., Fteni, S., and Barone, F., Mater. Lett. 34, 257 (1998).CrossRefGoogle Scholar
8.Kristoffersson, A., Roncari, E., and Galassi, C., J. Eur. Ceram. Soc. 18, 2123 (1998).CrossRefGoogle Scholar
9.Chartier, T. and Bruneau, A., J. Eur. Ceram. Soc. 12, 243 (1993)CrossRefGoogle Scholar
10.Nagata, K., J. Ceram. Soc. Jpn. 101, 845 (1993).CrossRefGoogle Scholar
11.Suzuki, S., etc. Ceram. Int. 25, 287 (1999).CrossRefGoogle Scholar
12.Doreau, F., Tari, G. et al. J. Eur. Ceram. Soc. 17, 287 (1997).Google Scholar
13.Kristoffersson, A. and Carström, E., J. Eur. Ceram. Soc. 17, 287 (1997).CrossRefGoogle Scholar
14.Nahass, P., Rhine, W.E., Pober, R.L., Bowen, H.K., and Robbins, W.L., Ceramic Transactions, Vol. 15, Materials and Processes in Microelectronic Systems (American Ceramic Society, Westerville, OH, 1990), pp. 355364.Google Scholar
15.Ushifusa, N. and Cima, M.J., J. Am. Ceram. Soc. 74, 2443 (1991).CrossRefGoogle Scholar
16.Pagnoux, C., Char, T., Granja, M. de F., Doreau, F., Ferreira, J.M., and Baumard, J.F., J. Eur. Ceram. Soc. 18, 241 (1998).CrossRefGoogle Scholar
17.Kita, K., Fukuda, J., Ohmura, H., and Sakai, T., U.S. Patent No. 4353958 (1982).Google Scholar
18.Onions, A., Manu. Chem. 5, 55 (1986).Google Scholar
19.Nies, C.W. and Messing, G.L., J. Am. Ceram. Soc. 67, 301 (1984).CrossRefGoogle Scholar
20.Briscoe, B.J., Biundo, G. Lo, and Ozkan, N., Ceram. Int. 24, 347 (1998).CrossRefGoogle Scholar
21.Scherer, G.W., J. Am. Ceram. Soc. 73, 3 (1990).CrossRefGoogle Scholar
22.Tarì, G. and Ferreira, J.M.F., J. Eur. Ceram. Soc. 18, 487 (1998).CrossRefGoogle Scholar
23.Yeo, J-G., Jung, Y-G., and Choi, S-C., Mater. Lett. 37, 304 (1998).CrossRefGoogle Scholar
24.Feng, J-H. and Dogan, F., Mater. Sci. Eng. A 283, 45 (2000).CrossRefGoogle Scholar
25.Yuping, Z., Dongliang, J., and Greil, P., J. Eur. Ceram. Soc. 20, 1691 (2000).CrossRefGoogle Scholar
26.Runxuan, Y., Water Soluble Macromolecules (Chemical Industry Press, Beijing, China, 1998), pp. 4279.Google Scholar
27.Hackley, V.A., J. Am. Ceram. Soc. 81, 2421, (1998).CrossRefGoogle Scholar
28.Descamps, M., Ringuet, G., Leger, D., and Thiry, B., J. Eur. Ceram. Soc. 15, 357 (1995).CrossRefGoogle Scholar
29.Zhang, J.X., Jiang, D.L., Tan, S.H., Gui, L.H., and Ruan, M.L., J. Am. Ceram. Soc. 84, 2537 (2001).CrossRefGoogle Scholar
30.Paik, U., Hackley, V.A., and Lee, H-W., J. Am. Ceram. Soc. 82, 833 (1999).CrossRefGoogle Scholar
31.Iller, R.K., The Chemistry of Silica (John Wiley, New York, 1979), pp. 622727.Google Scholar
32.Tadros, Th.F., J. Colloid Interface Sci. 64, 36 (1978).CrossRefGoogle Scholar
33.Tadros, Th.F., J. Colloid Interface Sci. 46, 528 (1974).CrossRefGoogle Scholar
34.Fleer, G.J. and Lyklema, J., J. Colloid Interface Sci. 46, 1 (1974).CrossRefGoogle Scholar
35.Lindquist, G.M. and Stratton, R.A., J. Colloid Interface Sci. 55, 45 (1976).CrossRefGoogle Scholar
36.Rubio, J. and Kitchener, J.A., J. Colloid Interface Sci. 57, 132 (1976).CrossRefGoogle Scholar
37.Boyer, R.F., J. Appl. Phys. 20, 540 (1949).CrossRefGoogle Scholar
38.Guo, L-C., Zhang, Y., Uchida, N., and Uematsu, K., J. Am. Ceram. Soc. 81, 549 (1998).CrossRefGoogle Scholar
39.Anderson, M.A. and Rubin, J., Adsorption of Inorganics at Solid-Liquid Interfaces (Ann Arbor Science Publishers, Ann Arbor, MI, 1981).Google Scholar
40.Lewis, J.A., Blackman, K.A., and Ogden, A.L., J. Am. Ceram. Soc. 79, 3225 (1996).CrossRefGoogle Scholar