Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T21:53:57.807Z Has data issue: false hasContentIssue false

Atomic-level simulation of epitaxial recrystallization and phase transformation in SiC

Published online by Cambridge University Press:  01 June 2006

F. Gao*
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
R. Devanathan
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
Y. Zhang
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
M. Posselt
Affiliation:
Forschungszentrum Rossendorf, Institute of Ion Beam Physics and Materials Research, D-01314 Dresden, Germany
W.J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: fei.gao@pnl.gov
Get access

Abstract

A nano-sized amorphous layer embedded in an atomic simulation cell was used to study the amorphous-to-crystalline (a-c) transition and subsequent phase transformation by molecular-dynamics computer simulations in 3C–SiC. The recovery of bond defects at the interfaces is an important process driving the initial epitaxial recrystallization of the amorphous layer, which is hindered by the nucleation of a polycrystalline 2H–SiC phase. The kink sites and triple junctions formed at the interfaces between 2H– and 3C–SiC provide low-energy paths for 2H–SiC atoms to transform to 3C–SiC atoms. The spectrum of activation energies associated with these processes ranges from below 0.8 eV to about 1.9 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kim, B.G., Choi, Y., Lee, J.W., Sohn, D.S., Kim, G.M.: Multi-layer coating of silicon carbide and pyrolytic carbon on UO2 pellets by a combustion reaction. J. Nucl. Mater. 281, 163 (2000).CrossRefGoogle Scholar
2.Bolse, W.: Amorphization and recrystallization of covalent tetrahedral networks. Nucl. Instrum. Methods Phys. Res. B 148, 83 (1999).CrossRefGoogle Scholar
3.Perlado, J.M., Malerba, L., Rubio, A. Sanchez, de Rubia, T. Diaz la: Analysis of displacement cascades and threshold displacement energies in β–SiC. J. Nucl. Mater. 276, 235 (2000).CrossRefGoogle Scholar
4.Ishmaru, M., Bae, I.T., Hirotsu, Y.: Electron-beam-induced amorphization in SiC. Phys. Rev. B 68, 144102 (2003).CrossRefGoogle Scholar
5.Gao, F., Weber, W.J.: Cascade overlap and amorphization in 3C–SiC: Defect accumulation, topological features and disordering. Phys. Rev. B 66, 024106 (2002).CrossRefGoogle Scholar
6.Zhang, Y., Weber, W.J., Jiang, W., Wang, C.M., Hellén, A., Possnert, G.: Effects of implantation temperature and ion flux on damage accumulation in Al-implanted 4H–SiC. J. Appl. Phys. 93, 1954 (2003).CrossRefGoogle Scholar
7.Satoh, M., Nakaike, Y., Nakamura, T.: Solid phase epitaxy of implantation-induced amorphous layer in (1-100)- and (11-20)-oriented 6H–SiC. J. Appl. Phys. 89, 1986 (2001).CrossRefGoogle Scholar
8.Heera, V., Stoemenos, J., Kogler, R., Skorupa, W.: Amorphization and recrystallization of 6H–SiC by ion-beam irradiation. J. Appl. Phys. 77, 2999 (1995).CrossRefGoogle Scholar
9.Spaepen, F., Turnbull, D.: Laser-Solid Interactions and Laser Processing edited by Ferris, S.D., Leamy, H.J., and Poate, J.M. (AIP, New York, 1979), p. 73.Google Scholar
10.Lu, G.Q., Nygren, E., Aziz, M.J.: Pressure-enhanced crystallization kinetics of amorphous Si and Ge: Implications for point-defect mechanisms. J. Appl. Phys. 70, 5323 (1991).CrossRefGoogle Scholar
11.Bernstein, N., Aziz, M.J., Kaxiras, E.: Atomistic simulations of solid-phase epitaxial growth in silicon. Phys. Rev. B 61, 6696 (2000).CrossRefGoogle Scholar
12.Marqués, L.A., Caturla, M.J., de Rubia, T. Diaz la: Ion beam induced recrystallization of amorphous silicon: A molecular dynamics study. J. Appl. Phys. 80, 6160 (1996).CrossRefGoogle Scholar
13.Bording, J.K., Taftø, T.: Molecular-dynamics simulation of growth of nanocrystals in an amorphous matrix. Phys. Rev. B 62, 8098 (2000).CrossRefGoogle Scholar
14.Finnis, M.W.: A Molecular Dynamics Program for Simulation of Pure Metals. UKAEA Report, No. AERER13182.Google Scholar
15.Gao, F., Weber, W.J.: Empirical potential approach for defect properties in 3C–SiC. Nucl. Instrum. Methods Phys. Res. B 191, 504 (2002).CrossRefGoogle Scholar
16.Gao, F., Weber, W.J.: Recovery of close Frenkel pairs produced by low energy recoils in SiC. J. Appl. Phys. 94, 4348 (2003).CrossRefGoogle Scholar
17.Gao, F., Weber, W.J., Posselt, M., Belko, V.: Atomistic study of intrinsic defect migration in 3C–SiC. Phys. Rev. B 69, 245205 (2004).CrossRefGoogle Scholar
18.Ishimaru, M., Bae, I-T., Hirotsu, Y., Matsumura, S., Sickafus, K.E.: Structural relaxation of amorphous silicon carbide. Phys. Rev. Lett. 89, 055502 (2002).CrossRefGoogle ScholarPubMed
19.Yuan, X., Hobbs, L.W.: Modeling chemical and topological disorder in irradiation-amorphized silicon carbide. Nucl. Instrum. Methods Phys. Res. B 191, 74 (2002).CrossRefGoogle Scholar
20.Gao, F., Devanathan, R., Zhang, Y., Weber, W.J.: Annealing simulations of nano-sized amorphous structures in SiC. Nucl. Instrum. Methods Phys. Res. B 228, 282 (2005).CrossRefGoogle Scholar
21.Edmonds, J.A., Davis, R.F., and Withrow, S.P.: Structural characterization of ion implanted beta-SiC thin films, in Ceramic Transactions Vol. 2 (The American Ceramic Society, Westerville, OH, 1989), p. 479.Google Scholar
22.Carter, C.H. Jr., Davis, R.F., Nutt, S.R.: Transmission electron microscopy of process-induced defects in β-SiC thin films. J. Mater. Res. 1, 811 (1986).CrossRefGoogle Scholar
23.Primak, W.: Large temperature annealing. J. Appl. Phys. 31, 1524 (1969).CrossRefGoogle Scholar
24.Damak, A.C., Dienes, G.J.: Point Defects in Metals (Gordon and Breach, New York, 1963), Chap. 3, p. 145.Google Scholar
25.Höfgen, A., Heera, V., Eichhorn, F., Skorupa, W., Möller, W.: Annealing and recrystallization of amorphous silicon carbide produced by ion implantation. Mater. Sci. Eng. B 61–62, 353 (1999).CrossRefGoogle Scholar