Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T12:02:54.611Z Has data issue: false hasContentIssue false

Atomic-level study of twin–twin interactions in hexagonal metals

Published online by Cambridge University Press:  14 April 2020

Mingyu Gong*
Affiliation:
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, USA
Wenqian Wu
Affiliation:
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska68588, USA
*
a)Address all correspondence to this author. e-mail: mingyu@huskers.unl.edu
Get access

Abstract

Twin–twin interactions (TTIs) take place when multiple twinning modes and/or twin variants are activated and interact with each other. Twin–twin junctions (TTJs) form and affect subsequent twinning/detwinning and dislocation slip, which is particularly important in determining mechanical behavior of hexagonal metals because twinning is one major deformation mode. Atomic-level study, including crystallographic analysis, transmission electronic microscopy (TEM), and molecular dynamics (MD) simulations, can provide insights into understanding the process of TTIs and structural characters associated with TTJs. Crystallographic analysis enables the classification of TTIs and the prediction of possible interfaces of twin–twin boundaries (TTBs), characters of boundary dislocations, and possible reactions of twinning dislocations and lattice dislocations at TTBs. MD simulations can explore the process of TTIs, microstructures of TTJs, atomic structures of TTBs, and stress fields associated with TTJs. The predictions based on crystallographic analysis and the findings from MD can be partially verified by TEM. More importantly, these results provide explanation for microstructural characters of TTJs and guidance for further TEM characterizations.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Aghion, E. and Bronfin, B.: Magnesium alloys development towards the 21st century. Mater. Sci. Forum 350351, 19 (2000).Google Scholar
Polmear, I.: Magnesium alloys and applications. Mater. Sci. Technol. 10, 1 (1994).CrossRefGoogle Scholar
Mathaudhu, S.N. and Nyberg, E.A.: Magnesium alloys in US military applications: Past, current, and future solutions. In Essential Readings in Magnesium Technology, edited by S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, and W.H. Sillekens (Springer, Cham, Switzerland, 2016), p. 71.CrossRefGoogle Scholar
Astarita, A., Testani, C., Scherillo, F., Squillace, A., and Carrino, L.: Beta forging of a Ti6Al4V component for aeronautic applications: Microstructure evolution. Metallogr., Microstruct., Anal. 3, 460 (2014).CrossRefGoogle Scholar
Froes, F.: Titanium: Physical Metallurgy, Processing, and Applications (ASM International, Materials Park, Ohio, 2015).Google Scholar
Leyens, C. and Peters, M.: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH , Weinheim, Germany, 2003).CrossRefGoogle Scholar
Schmid, E.: Contribution to the physics and metallography of magnesium. Z. Electrochem. 37, 447 (1931).Google Scholar
Bakarian, P.W.: Glide and Twinning in Magnesium Single Crystals at Elevated Temperatures (Yale University, New Haven, Connecticut, 1941).Google Scholar
Conrad, H. and Robertson, W.: Effect of temperature on the flow stress and strain-hardening coefficient of magnesium single crystals. JOM 9, 503 (1957).CrossRefGoogle Scholar
Akhtar, A. and Teghtsoonian, E.: Solid solution strengthening of magnesium single crystals—I alloying behaviour in basal slip. Acta Metall. 17, 1339 (1969).CrossRefGoogle Scholar
Akhtar, A. and Teghtsoonian, E.: Substitutional solution hardening of magnesium single crystals. Philos. Mag. 25, 897 (1972).CrossRefGoogle Scholar
Wang, L., Zheng, Z., Phukan, H., Kenesei, P., Park, J.S., Lind, J., Suter, R.M., and Bieler, T.R.: Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy. Acta Mater. 132, 598 (2017).CrossRefGoogle Scholar
Barkia, B., Doquet, V., Couzinié, J.P., Guillot, I., and Héripré, E.: In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater. Sci. Eng., A 636, 91 (2015).CrossRefGoogle Scholar
Flynn, P.W., Mote, J., and Dorn, J.E.: On the thermally activated mechanism of prismatic slip in magnesium single crystals. Trans. Metall. Soc. AIME 221, 1148 (1961).Google Scholar
Xie, K.Y., Alam, Z., Caffee, A., and Hemker, K.J.: Pyramidal I slip in c-axis compressed Mg single crystals. Scr. Mater. 112, 75 (2016).CrossRefGoogle Scholar
Wu, Z., Francis, M.F., and Curtin, W.A.: Magnesium interatomic potential for simulating plasticity and fracture phenomena. Modell. Simul. Mater. Sci. Eng. 23, 045004 (2015).CrossRefGoogle Scholar
Williams, J., Baggerly, R., and Paton, N.: Deformation behavior of HCP Ti–Al alloy single crystals. Metall. Mater. Trans. A 33, 837 (2002).CrossRefGoogle Scholar
Gong, J. and Wilkinson, A.J.: Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Mater. 57, 5693 (2009).CrossRefGoogle Scholar
Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).CrossRefGoogle Scholar
Kaschner, G.C., Tomé, C.N., McCabe, R.J., Misra, A., Vogel, S.C., and Brown, D.W.: Exploring the dislocation/twin interactions in zirconium. Mater. Sci. Eng., A 463, 122 (2007).CrossRefGoogle Scholar
Chapuis, A. and Driver, J.H.: Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 59, 1986 (2011).CrossRefGoogle Scholar
El Kadiri, H., Barrett, C.D., Wang, J., and Tomé, C.N.: Why are $\left\{ {10\bar{1}2} \right\}$ twins profuse in magnesium? Acta Mater. 85, 354 (2015).CrossRefGoogle Scholar
Serra, A., Bacon, D.J., and Pond, R.C.: Dislocations in interfaces in the hcp metals—I. Defects formed by absorption of crystal dislocations. Acta Mater. 47, 1425 (1999).CrossRefGoogle Scholar
Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., Yu, Q., Mao, S.X., and Ritchie, R.O.: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).CrossRefGoogle ScholarPubMed
Liu, B-Y., Wang, J., Li, B., Lu, L., Zhang, X.Y., Shan, Z-W., Li, J., Jia, C-L., Shu, J., and Ma, E.: Twinning-like lattice reorientation without a crystallographic twinning plane. Nat. Commun. 5, 1 (2014).Google ScholarPubMed
Beyerlein, I., Capolungo, L., Marshall, P., McCabe, R., and Tomé, C.: Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90, 2161 (2010).CrossRefGoogle Scholar
Reed-Hill, R.E.: A study of the (1011) and (1013) twinning modes in magnesium. Trans. Am. Inst. Min. Metall. Eng. 218, 554 (1960).Google Scholar
Yoshinaga, H. and Horiuchi, R.: Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. Trans. Jpn. Inst. Met. 4, 1 (1963).CrossRefGoogle Scholar
Yoshinaga, H., Obara, T., and Morozumi, S.: Twinning deformation in magnesium compressed along the C-axis. Mater. Sci. Eng. 12, 255 (1973).CrossRefGoogle Scholar
Bieler, T., Eisenlohr, P., Zhang, C., Phukan, H., and Crimp, M.: Grain boundaries and interfaces in slip transfer. Curr. Opin. Solid State Mater. Sci. 18, 212 (2014).CrossRefGoogle Scholar
Salem, A.A., Kalidindi, S.R., and Doherty, R.D.: Strain hardening of titanium: Role of deformation twinning. Acta Mater. 51, 4225 (2003).CrossRefGoogle Scholar
Mullins, S. and Patchett, B.M.: Deformation microstructures in titanium sheet metal. Metall. Trans. A 12, 853 (1981).CrossRefGoogle Scholar
Capolungo, L. and Beyerlein, I.: Nucleation and stability of twins in hcp metals. Phys. Rev. B 78, 024117 (2008).CrossRefGoogle Scholar
Jin, S., Marthinsen, K., and Li, Y.: Formation of $\left\{ {11\bar{2}1} \right\}$ twin boundaries in titanium by kinking mechanism through accumulative dislocation slip. Acta Mater. 120, 403 (2016).CrossRefGoogle Scholar
Wang, L., Barabash, R., Bieler, T., Liu, W., and Eisenlohr, P.: Study of $\left\{ {11\bar{2}1} \right\}$ twinning in α-Ti by EBSD and Laue microdiffraction. Metall. Mater. Trans. A 44, 3664 (2013).CrossRefGoogle Scholar
Xu, S., Gong, M., Schuman, C., Lecomte, J-S., Xie, X., and Wang, J.: Sequential $\left\{ {10\bar{1}2} \right\}$ twinning stimulated by other twins in titanium. Acta Mater. 132, 57 (2017).CrossRefGoogle Scholar
Wang, S., Zhang, Y., Schuman, C., Lecomte, J-S., Zhao, X., Zuo, L., Philippe, M-J., and Esling, C.: Study of twinning/detwinning behaviors of Ti by interrupted in situ tensile tests. Acta Mater. 82, 424 (2015).CrossRefGoogle Scholar
Lainé, S.J. and Knowles, K.M.: $\left\{ {11\bar{2}4} \right\}$ deformation twinning in commercial purity titanium at room temperature. Philos. Mag. 95, 2153 (2015).CrossRefGoogle Scholar
Xu, F., Zhang, X., Ni, H., and Liu, Q.: $\left\{ {11\bar{2}4} \right\}$ deformation twinning in pure Ti during dynamic plastic deformation. Mater. Sci. Eng., A 541, 190 (2012).CrossRefGoogle Scholar
Xu, S., Zhou, P., Liu, G., Xiao, D., Gong, M., and Wang, J.: Shock-induced two types of $\left\{ {10\bar{1}2} \right\}$ sequential twinning in titanium. Acta Mater. 165, 547 (2019).CrossRefGoogle Scholar
Li, Y.J., Chen, Y.L., Walmsley, J.C., Mathinsen, R.H., Dumoulin, S., and Roven, H.J.: Faceted interfacial structure of $\left\{ {10\bar{1}1} \right\}$ twins in Ti formed during equal channel angular pressing. Scr. Mater. 62, 443446 (2010).CrossRefGoogle Scholar
Zeng, Z., Jonsson, S., and Roven, H.J.: The effects of deformation conditions on microstructure and texture of commercially pure Ti. Acta Mater. 57, 5822 (2009).CrossRefGoogle Scholar
Xu, S., Gong, M., Xie, X., Liu, Y., Schuman, C., Lecomte, J-S., and Wang, J.: Crystallographic characters of $\left\{ {11\bar{2}2} \right\}$ twin–twin junctions in titanium. Philos. Mag. Lett. 97, 429441 (2017).CrossRefGoogle Scholar
Sun, Q., Zhang, X.Y., Ren, Y., Tan, L., and Tu, J.: Observations on the intersection between $\left\{ {10\bar{1}2} \right\}$ twin variants sharing the same zone axis in deformed magnesium alloy. Mater. Charact. 109, 160 (2015).CrossRefGoogle Scholar
Sun, Q., Ostapovets, A., Zhang, X., Tan, L., and Liu, Q.: Investigation of twin–twin interaction in deformed magnesium alloy. Philos. Mag. 98, 741 (2018).CrossRefGoogle Scholar
Sinha, S. and Gurao, N.: In situ electron backscatter diffraction study of twinning in commercially pure titanium during tension-compression deformation and annealing. Mater. Des. 116, 686 (2017).CrossRefGoogle Scholar
Xiao, L. and Umakoshi, Y.: Orientation dependence of cyclic deformation behavior and dislocation structure in Ti–5 at.% Al single crystals. Mater. Sci. Eng., A 339, 63 (2003).CrossRefGoogle Scholar
Morrow, B.M., McCabe, R.J., Cerreta, E.K., and Tomé, C.N.: In situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall. Mater. Trans. A 45, 36 (2014).CrossRefGoogle Scholar
Yu, Q., Jiang, Y., and Wang, J.: Cyclic deformation and fatigue damage in single-crystal magnesium under fully reversed strain-controlled tension–compression in the $\left[ {10\bar{1}0} \right]$ direction. Scr. Mater. 96, 41 (2015).CrossRefGoogle Scholar
Yu, Q., Zhang, J., and Jiang, Y.: Direct observation of twinning–detwinning–retwinning on magnesium single crystal subjected to strain-controlled cyclic tension–compression in [0 0 0 1] direction. Philos. Mag. Lett. 91, 757 (2011).CrossRefGoogle Scholar
Zhou, P., Xu, S., Xiao, D., Jiang, C., Hu, Y., and Wang, J.: Shock-induced $\left\{ {11\bar{2}1} \right\}$$\left\{ {11\bar{2}2} \right\}$ double twinning in titanium. Int. J. Plast. 112, 194 (2019).CrossRefGoogle Scholar
Chichili, D., Ramesh, K., and Hemker, K.: The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms, and modeling. Acta Mater. 46, 1025 (1998).CrossRefGoogle Scholar
Yu, Q., Wang, J., Jiang, Y., McCabe, R.J., Li, N., and Tomé, C.N.: Twin–twin interactions in magnesium. Acta Mater. 77, 28 (2014).CrossRefGoogle Scholar
El Kadiri, H., Kapil, J., Oppedal, A.L., Hector, L.G., Agnew, S.R., Cherkaoui, M., and Vogel, S.C.: The effect of twin–twin interactions on the nucleation and propagation of twinning in magnesium. Acta Mater. 61, 3549 (2013).CrossRefGoogle Scholar
Juan, P.A., Pradalier, C., Berbenni, S., McCabe, R.J., Tomé, C.N., and Capolungo, L.: A statistical analysis of the influence of microstructure and twin–twin junctions on twin nucleation and twin growth in Zr. Acta Mater. 95, 399 (2015).CrossRefGoogle Scholar
Rosi, F.: Twin intersections in titanium. Acta Metall. 5, 337339 (1957).CrossRefGoogle Scholar
Hong, S-G., Park, S.H., and Lee, C.S.: Strain path dependence of $\left\{ {10\bar{1}2} \right\}$ twinning activity in a polycrystalline magnesium alloy. Scr. Mater. 64, 145 (2011).CrossRefGoogle Scholar
Shi, D., Liu, T., Hou, D., Chen, H., Pan, F., and Chen, H.: The effect of twin–twin interaction in Mg–3Al–1Zn alloy during compression. J. Alloys Compd. 685, 428 (2016).CrossRefGoogle Scholar
Jiang, L., Jonas, J.J., Luo, A.A., Sachdev, A.K., and Godet, S.: Influence of $\left\{ {10\bar{1}2} \right\}$ extension twinning on the flow behavior of AZ31 Mg alloy. Mater. Sci. Eng., A 445, 302 (2007).CrossRefGoogle Scholar
Sim, G-D., Kim, G., Lavenstein, S., Hamza, M.H., Fan, H., and El-Awady, J.A.: Anomalous hardening in magnesium driven by a size-dependent transition in deformation modes. Acta Mater. 144, 11 (2018).CrossRefGoogle Scholar
Roberts, E. and Partridge, P.G.: The accommodation around {1012} 〈1011〉 twins in magnesium. Acta Metall. 14, 513 (1966).CrossRefGoogle Scholar
Morrow, B.M., Cerreta, E.K., McCabe, R.J., and Tome, C.N.: Toward understanding twin–twin interactions in hcp metals: Utilizing multiscale techniques to characterize deformation mechanisms in magnesium. Mater. Sci. Eng., A 613, 365 (2014).CrossRefGoogle Scholar
Gong, M., Xu, S., Jiang, Y., Liu, Y., and Wang, J.: Structural characteristics of $\left\{ {1\bar{0}12} \right\}$ non-cozone twin–twin interactions in magnesium. Acta Mater. 159, 65 (2018).CrossRefGoogle Scholar
Kumar, M.A., Gong, M., Beyerlein, I., Wang, J., and Tomé, C.N.: Role of local stresses on co-zone twin–twin junction formation in HCP magnesium. Acta Mater. 168, 353 (2019).CrossRefGoogle Scholar
Li, X., Li, J., Zhou, B., Yu, M., and Sui, M.: Interaction of $\left\{ {11\bar{2}2} \right\}$ twin variants in hexagonal close-packed titanium. J. Mater. Sci. Technol. 35, 660 (2019).CrossRefGoogle Scholar
Chen, H., Liu, T., Xiang, S., and Liang, Y.: Abnormal migration of twin boundaries in rolled AZ31 alloy containing intersecting $\left\{ {1\bar{0}12} \right\}$ extension twins. J. Alloys Compd. 690, 376 (2017).CrossRefGoogle Scholar
Sabisch, J.E. and Minor, A.M.: Microstructural evolution of rhenium part I: Compression. Mater. Sci. Eng., A 732, 251 (2018).CrossRefGoogle Scholar
Chen, P., Wang, F., Ombogo, J., and Li, B.: Formation of 60° $\left\langle {01\bar{1}0} \right\rangle$ boundaries between $\left\{ {10\bar{1}2} \right\}$ twin variants in deformation of a magnesium alloy. Mater. Sci. Eng., A 739, 173 (2019).CrossRefGoogle Scholar
Shi, Z-Z., Xu, J-Y., Yu, J., and Liu, X-F.: Intragranular cross-level twin pairs in AZ31 Mg alloy after sequential biaxial compressions. J. Alloys Compd. 749, 52 (2018).CrossRefGoogle Scholar
Jäger, A., Ostapovets, A., Molnár, P., and Lejček, P.: $\left\{ {10\bar{1}2} \right\}$$\left\{ {10\bar{1}2} \right\}$ double twinning in magnesium. Philos. Mag. Lett. 91, 537 (2011).CrossRefGoogle Scholar
Yu, Q., Wang, J., Jiang, Y., McCabe, R.J., and Tomé, C.N.: Co-zone $\left\{ {\bar{1}012} \right\}$ twin interaction in magnesium single crystal. Mater. Res. Lett. 2, 82 (2014).CrossRefGoogle Scholar
Li, H., Xu, X., Sun, Q., Zhang, X., Fang, X., and Zhu, M.: Investigation of interfacial feature and interactional behavior of $\left\{ {11\bar{2}2} \right\}$ twin in deformed titanium. J. Alloys Compd. 788, 1137 (2019).CrossRefGoogle Scholar
Pratt, P.L. and Pugh, S.F.: The movement of twins, kinks, and mosaic walls in zinc. Acta Metall. 1, 218 (1953).CrossRefGoogle Scholar
Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (Wiley, New York, 1982).Google Scholar
Ostapovets, A., Buršík, J., Krahula, K., Král, L., and Serra, A.: On the relationship between and conjugate twins and double extension twins in rolled pure Mg. Philos. Mag. 97, 1088 (2017).CrossRefGoogle Scholar
Huang, Z., Yong, P., Liang, N., and Li, Y.: Slip, twinning and twin–twin interaction in a gradient structured titanium. Mater. Charact. 149, 52 (2019).CrossRefGoogle Scholar
Morrow, B.M., McCabe, R.J., Cerreta, E.K., and Tomé, C.N.: Observations of the atomic structure of tensile and compressive twin boundaries and twin–twin interactions in zirconium. Metall. Mater. Trans. A 45, 5891 (2014).CrossRefGoogle Scholar
Reed-Hill, R. and Buchanan, E.: Zig-zag twins in zirconium. Acta Metall. 11, 7375 (1963).CrossRefGoogle Scholar
Sabisch, J.E. and Minor, A.M.: Microstructural evolution of rhenium part II: Tension. Mater. Sci. Eng., A 732, 259 (2018).CrossRefGoogle Scholar
Xu, S., Gong, M., Jiang, Y., Schuman, C., Lecomte, J-S., and Wang, J.: Secondary twin variant selection in four types of double twins in titanium. Acta Mater. 152, 58 (2018).CrossRefGoogle Scholar
Wang, H., Wu, P.D., Wang, J., and Tomé, C.N.: A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast. 49, 36 (2013).CrossRefGoogle Scholar
Liu, Y., Tang, P., Gong, M., McCabe, R., Wang, J., and Tomé, C.: Three-dimensional character of the deformation twin in magnesium. Nat. Commun. 10, 3308 (2019).CrossRefGoogle ScholarPubMed
Gong, M., Liu, G., Wang, J., Capolungo, L., and Tomé, C.N.: Atomistic simulations of interaction between basal 〈a〉 dislocations and three-dimensional twins in magnesium. Acta Mater. 155, 187 (2018).CrossRefGoogle Scholar
Gong, M., Hirth, J.P., Liu, Y., Shen, Y., and Wang, J.: Interface structures and twinning mechanisms of twins in hexagonal metals. Mater. Res. Lett. 5, 449464 (2017).CrossRefGoogle Scholar
Hirth, J.P., Wang, J., and Tomé, C.N.: Disconnections and other defects associated with twin interfaces. Prog. Mater. Sci. 83, 417 (2016).CrossRefGoogle Scholar
Wang, J., Hirth, J.P., and Tomé, C.N.: $\left( {\bar{1}012} \right)$ twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 57, 5521 (2009).CrossRefGoogle Scholar
Pond, R.C., Serra, A., and Sutton, A.P.: The crystallography and atomic structure of line defects in twin boundaries in hexagonal-close-packed metals. Metall. Mater. Trans. A 22, 1185 (1991).CrossRefGoogle Scholar
Wang, J. and Beyerlein, I.J.: Atomic structures of $\left[ {0\bar{1}10} \right]$ symmetric tilt grain boundaries in hexagonal close-packed (hcp) crystals. Metall. Mater. Trans. A 43, 3556 (2012).CrossRefGoogle Scholar