Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:36:58.914Z Has data issue: false hasContentIssue false

Atomic-scale insights on the plate-shaped γ″ phase in Mg–Gd–Y–Ag–Zr alloy

Published online by Cambridge University Press:  13 July 2020

Zhenyang Liu
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai200240, China
Zongrui Pei
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, USA
Bin Chen*
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
X. Q. Zeng*
Affiliation:
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai200240, China
*
a)Address all correspondence to these authors. e-mail: steelboy@sjtu.edu.cn
Get access

Abstract

The γ″ phase (hexagonal structure with space group ${ P\bar{6}}2{ m}$) plays an important role in the strengthening of Mg–Gd–Y–Ag–Zr alloy. In this study, Cs-corrected high-angle annular dark-field scanning transmission electron microscopy was applied to characterize the Mg–Gd–Y–Ag–Zr alloy in different conditions (as-cast, solution-treated, and isothermally aged at 200 °C). The nucleation, growing process, and transformation behavior of the plate-shaped γ″ phase were systematically investigated on the atomic scale. We found that the nucleation sites of the γ″ phase were separated by close-packed planes of the Mg matrix and the γ″ phase developed in two perpendicular directions of $\langle 10\bar{1}0 \rangle$ and ⟨0001⟩. The growing process of the γ″ phase on the atomic scale was captured. The γ″ phase was thermodynamically stable at room temperature, and no transformation behavior of the γ″ phase was observed up to 200 h during isothermal aging at 200 °C.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nie, J.-F.: Physical Metallurgy, 5th ed. (Elsevier, Oxford, 2014); p. 2009.CrossRefGoogle Scholar
Lentz, M., Risse, M., Schaefer, N., Reimers, W., and Beyerlein, I.J.: Strength and ductility with {1011} - {1012} double twinning in a magnesium alloy. Nat. Commun. 7, 11068 (2016).CrossRefGoogle Scholar
Zeng, Z., Nie, J.-F., Xu, S.W., Davies, C.H.J., and Birbilis, N.: Super-formable pure magnesium at room temperature. Nat. Commun. 8, 972 (2017).CrossRefGoogle ScholarPubMed
Nie, J.-F.: Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43, 3891 (2012).CrossRefGoogle Scholar
Aghion, E. and Bronfin, B.: Magnesium alloys development towards the 21st century. Mater. Sci. Forum 350–351, 19 (2000).CrossRefGoogle Scholar
Pollock, T.M.: Weight loss with magnesium alloys. Science 328, 986 (2010).CrossRefGoogle ScholarPubMed
Mordike, B.L. and Ebert, T.: Magnesium: Properties — applications — potential. Mater. Sci. Eng. A 302, 37 (2001).CrossRefGoogle Scholar
Polmear, I.J.: Magnesium alloys and applications. Mater. Sci. Technol. 10, 1 (1994).CrossRefGoogle Scholar
Yamada, K., Okubo, Y., Shiono, M., Watanabe, H., Kamado, S., and Kojima, Y.: Alloy development of high toughness Mg-Gd-Y-Zn-Zr alloys. Mater. Trans. 47, 1066 (2006).CrossRefGoogle Scholar
Nie, J.-F., Gao, X., and Zhu, S.M.: Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn. Scr. Mater. 53, 1049 (2005).CrossRefGoogle Scholar
Rong, W., Wu, Y., Zhang, Y., Sun, M., Chen, J., Peng, L., and Ding, W.: Characterization and strengthening effects of γ′ precipitates in a high-strength casting Mg-15Gd-1Zn-0.4Zr (wt.%) alloy. Mater. Charact. 126, 1 (2017).CrossRefGoogle Scholar
Huang, S.: Study of the Composite Strengthening and Toughening Mechanism of High-Strength Mg-RE-TM Alloys With LPSO Phase and Precipitation Hardening Phase (Chongqing University, Chongqing, 2016).Google Scholar
Homma, T., Kunito, N., and Kamado, S.: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61, 644 (2009).CrossRefGoogle Scholar
Zhou, H., Wang, Q.-D., Chen, J., Ye, B., and Guo, W.: Microstructure and mechanical properties of extruded Mg–8.5Gd–2.3Y–1.8Ag–0.4Zr alloy. Trans. Nonferrous Met. Soc. China 22, 1891 (2012).CrossRefGoogle Scholar
Gao, X. and Nie, J.F.: Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn. Scr. Mater. 58, 619 (2008).CrossRefGoogle Scholar
Wang, Q., Chen, J., Zhao, Z., and He, S.: Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy. Mater. Sci. Eng. A 528, 323 (2010).CrossRefGoogle Scholar
Zhang, Y., Rong, W., Wu, Y., Peng, L., Nie, J.-F., and Birbilis, N.: A comparative study of the role of Ag in microstructures and mechanical properties of Mg-Gd and Mg-Y alloys. Mater. Sci. Eng. A 731, 609 (2018).CrossRefGoogle Scholar
Zheng, J.K., Luo, R., Zeng, X., and Chen, B.: Nano-scale precipitation and phase growth in Mg-Gd binary alloy: An atomic-scale investigation using HAADF-STEM. Mater. Des. 137, 316 (2018).CrossRefGoogle Scholar
Nie, J.F., Wilson, N.C., Zhu, Y.M., and Xu, Z.: Solute clusters and GP zones in binary Mg–RE alloys. Acta Mater. 106, 260 (2016).CrossRefGoogle Scholar
Nishijima, M., Hiraga, K., Yamasaki, M., and Kawamura, Y.: Characterization of β′ phase precipitates in an Mg-5 at%Gd alloy aged in a peak hardness condition, studied by high-angle annular detector dark-field scanning transmission electron microscopy. Mater. Trans. 47, 2109 (2006).CrossRefGoogle Scholar
Xie, H., Pan, H., Ren, Y., Sun, S., Wang, L., He, Y., and Qin, G.: Co-existences of the two types of β′ precipitations in peak-aged Mg-Gd binary alloy. J. Alloys Compd. 738, 32 (2018).CrossRefGoogle Scholar
Sha, X., Xiao, L., Chen, X., Cheng, G., Yu, Y., Yin, D., and Zhou, H.: Atomic structure of γ″ phase in Mg–Gd–Y–Ag alloy induced by Ag addition. Philos. Mag. 99, 1957 (2019).CrossRefGoogle Scholar
Zhang, Y., Zhu, Y., Rong, W., Wu, Y., Peng, L., Nie, J.-F., and Birbilis, N.: On the precipitation in an Ag-containing Mg-Gd-Zr alloy. Metall. Mater. Trans. A 49, 673 (2018).CrossRefGoogle Scholar
Nie, J.-F.: Applications of atomic-resolution HAADF-STEM and EDS-STEM characterization of light alloys. IOP Conf. Ser. Mater. Sci. Eng. 219, 012005 (2017).CrossRefGoogle Scholar
Pennycook, S.J.: Z-contrast stem for materials science. Ultramicroscopy 30, 58 (1989).CrossRefGoogle Scholar
Williams, D.B. and Carter, C.B.: Transmission Electron Microscopy: A Textbook for Materials Science, 3rd ed. (Springer Science & Business Media, New York, 2009); p. 760.CrossRefGoogle Scholar
Zhou, H., Xu, W.Z., Jian, W.W., Cheng, G.M., Ma, X.L., Guo, W., Mathaudhu, S.N., Wang, Q.D., and Zhu, Y.T.: A new metastable precipitate phase in Mg–Gd–Y–Zr alloy. Philos. Mag. 94, 2403 (2014).CrossRefGoogle Scholar
Zheng, J., Li, Z., Luo, Z., Xu, X., and Chen, B.: Precipitation in Mg-Nd-Y-Zr-Ca alloy during isothermal aging: A comprehensive atomic-scaled study by means of HAADF-STEM. Adv. Eng. Mater. 19, 1 (2016).Google Scholar
Zheng, J., Zhou, W., and Chen, B.: Precipitation in Mg-Sm binary alloy during isothermal ageing: atomic-scale insights from scanning transmission electron microscopy. Mater. Sci. Eng. A 669, 304 (2016).CrossRefGoogle Scholar
Liu, H., Zhu, Y.M., Wilson, N.C., and Nie, J.-F.: On the structure and role of βF′ in β1 precipitation in Mg–Nd alloys. Acta Mater. 133, 408 (2017).CrossRefGoogle Scholar
Zheng, J.K., Zhu, C., Li, Z., Luo, R., Zeng, X., and Chen, B.: On the strengthening precipitate structures in Mg-Gd-Ag alloy: An atomic-resolution investigation using Cs-corrected STEM. Mater. Lett. 238, 66 (2019).CrossRefGoogle Scholar
Nie, J.-F., Oh-ishi, K., Gao, X., and Hono, K.: Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy. Acta Mater. 56, 6061 (2008).CrossRefGoogle Scholar
Li, Z., Zheng, J., and Chen, B.: Unravelling the structure of γ″ in Mg-Gd-Zn: An atomic-scale HAADF-STEM investigation. Mater. Charact. 120, 345 (2016).CrossRefGoogle Scholar
Gu, X.-F., Furuhara, T., Kiguchi, T., Konno, T.J., Chen, L., and Yang, P.: On the atomic structure of γ″ phase in Mg-Zn-Gd alloy. Scr. Mater. 146, 64 (2018).CrossRefGoogle Scholar
Zhu, Y.M., Oh-ishi, K., Wilson, N.C., Hono, K., Morton, A.J., and Nie, J.-F.: Precipitation in a Ag-containing Mg-Y-Zn alloy. Metall. Mater. Trans. A 47, 927 (2015).CrossRefGoogle Scholar
Choudhuri, D., Srinivasan, S.G., Gibson, M.A., Zheng, Y., Jaeger, D.L., Fraser, H.L., and Banerjee, R.: Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening. Nat. Commun. 8, 2000 (2017).CrossRefGoogle ScholarPubMed
Liu, Z., Pei, Z., Chen, B., Ding, W., and Zeng, X.: Unexpected capture of Guinier-Preston zone and γ″ phase in as-cast Mg-Gd-Y-Zn-Ni-Mn alloy: atomic-scale insights. Mater. Charact. 153, 103 (2019).CrossRefGoogle Scholar
Nishijima, M. and Hiraga, K.: Structural changes of precipitates in an Mg-5 at%Gd alloy studied by transmission electron microscopy. Mater. Trans. 48, 10 (2007).CrossRefGoogle Scholar
Lefebvre, W., Kopp, V., and Pareige, C.: Nano-precipitates made of atomic pillars revealed by single atom detection in a Mg-Nd alloy. Appl. Phys. Lett. 100, 141906 (2012).CrossRefGoogle Scholar
Xiao, L.R., Cao, Y., Li, S., Zhou, H., Ma, X.L., Mao, L., Sha, X.C., Wang, Q.D., Zhu, Y.T., and Han, X.D.: The formation mechanism of a novel interfacial phase with high thermal stability in a Mg-Gd-Y-Ag-Zr alloy. Acta Mater. 162, 214 (2019).CrossRefGoogle Scholar
Kim, J.-K., Ko, W.-S., Sandlöbes, S., Heidelmann, M., Grabowski, B., and Raabe, D.: The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy. Acta Mater. 112, 171 (2016).CrossRefGoogle Scholar
Nie, J.-F., Zhu, Y.M., and Morton, A.J.: On the structure, transformation and deformation of long-period stacking ordered phases in Mg-Y-Zn alloys. Metall. Mater. Trans. A 45, 3338 (2014).CrossRefGoogle Scholar
Clementi, E., Raimondi, D.L., and Reinhardt, W.P.: Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J. Chem. Phys. 47, 1300 (1967).CrossRefGoogle Scholar
Nie, J.-F.: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48, 1009 (2003).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar