Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T20:11:58.174Z Has data issue: false hasContentIssue false

Atomistic study of the melting behavior of single crystalline wurtzite gallium nitride nanowires

Published online by Cambridge University Press:  03 March 2011

Zhiguo Wang*
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China; and Pacific Northwest National Laboratory, Richland, Washington 99352
Xiaotao Zu
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengd, 610054, People’s Republic of China
Fei Gao
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
William J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: zgwang_dr@yahoo.com
Get access

Abstract

Molecular dynamic simulation was used to study the melting behavior of gallium nitride (GaN) nanowires with the Stillinger-Weber potential. Our results reveal that the melting of the nanowires starts from the surface and rapidly extends to the inner regions of nanowires as temperature increases. The melting temperatures increase to saturation values ∼3100 and ∼2900 K when the diameters of nanowires are larger than 3.14 and 4.14 nm for the nanowires with [100]- and [110]-oriented lateral facets, respectively. The saturated values are close to the melting temperature of bulk GaN. The low melting temperature of GaN nanowires with small diameter may be associated with the large surfaces of nanowires.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C.M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).CrossRefGoogle ScholarPubMed
2Wang, J.F., Gudiksen, M.S., Duan, X.F., Cui, Y., and Lieber, C.M.: Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455 (2001).CrossRefGoogle ScholarPubMed
3Reiss, H., Mirabel, P., and Whetten, R.L.: Capillarity theory for the coexistence of liquid and solid clusters. J. Phys. Chem. 92, 7241 (1988).CrossRefGoogle Scholar
4Peters, K.F., Cohen, J.B., and Chung, Y.W.: Melting of Pb nanocrystals. Phys. Rev. B 57, 1098 (1998).CrossRefGoogle Scholar
5Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., and Allen, L.H.: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, 99 (1996).CrossRefGoogle ScholarPubMed
6Dippel, M., Maier, A., Gimple, V., Wider, H., Evenson, W.E., Rasera, R.L., and Schatz, G.: Size-dependent melting of self-assembled indium nanostructures. Phys. Rev. Lett. 87, 095505 (2001).CrossRefGoogle ScholarPubMed
7Ding, F., Rosén, A., and Bolton, K.: Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study. Phys. Rev. B 70, 075416 (2004).CrossRefGoogle Scholar
8Miao, L., Bhethanabotla, V.R., and Joseph, B.: Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Phys. Rev. B 72, 134109 (2005).CrossRefGoogle Scholar
9Cleveland, C.L., Luedtke, W.D., and Landman, U.: Melting of gold clusters. Phys. Rev. B 60, 5065 (1999).CrossRefGoogle Scholar
10Delogu, F.: Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations. Phys. Rev. B 72, 205418 (2005).CrossRefGoogle Scholar
11Huang, Y., Duan, X.F., Cui, Y., and Lieber, C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002).CrossRefGoogle Scholar
12Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P.D., and Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106 (2002).CrossRefGoogle ScholarPubMed
13Gradečak, S., Qian, F., Li, Y., Park, H.G., and Lieber, C.M.: GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).CrossRefGoogle Scholar
14Duan, X.F. and Lieber, C.M.: Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000).CrossRefGoogle Scholar
15Stern, E., Cheng, G., Cimpoiasu, E., Klie, R., Guthrie, S., Klemic, J., Kretzschmar, I., Steinlauf, E., Turner-Evans, D., Broomfield, E., Hyland, J., Koudelka, R., Boone, T., Young, M., Sanders, A., Munden, R., Lee, T., Routenberg, D., and Reed, M.A.: Electrical characterization of single GaN nanowires. Nanotechnology 16, 2941 (2005).CrossRefGoogle Scholar
16Wang, T., Ranalli, F., Parbrook, P.H., Airey, R., Bai, J., Rattlidge, R., and Hill, G.: Fabrication and optical investigation of a high-density GaN nanowire array. Appl. Phys. Lett. 86, 103103 (2005).CrossRefGoogle Scholar
17Han, D.S., Park, J., Rhie, K.W., Kim, S., and Chang, J.: Ferromagnetic Mn-doped GaN nanowires. Appl. Phys. Lett. 86, 032506 (2005).CrossRefGoogle Scholar
18Lee, S.K., Choi, H.J., Pauzauskie, P., Yang, P.D., Cho, N.K., Park, H.D., Suj, E.K., Lim, K.Y., and Lee, H.J.: Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach. Phys. Status Solidi B 241, 2775 (2004).CrossRefGoogle Scholar
19Chen, X.H., Xu, J., Wang, R.M., and Yu, D.P.: High-quality ultra-fine GaN nanowires synthesized via chemical vapor deposition. Adv. Mater. 15, 419 (2003).CrossRefGoogle Scholar
20Kipshidze, G., Yavich, B., Chandolu, A., Yun, J., Kuryatkov, V., Ahmad, I., Aurongzeb, D., Holtz, M., and Temkin, H.: Controlled growth of GaN nanowires by pulsed metalorganic chemical vapor deposition. Appl. Phys. Lett. 86, 033104 (2005).CrossRefGoogle Scholar
21Seryogin, G., Shalish, I., Moberlychan, W., and Narayanamurti, V.: Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology 16, 2342 (2005).CrossRefGoogle ScholarPubMed
22Liu, B.D., Bando, Y., Tang, C.C., Xu, F.F., and Golberg, D.: Quasi-aligned single-crystalline GaN nanowire arrays. Appl. Phys. Lett. 87, 073106 (2005).CrossRefGoogle Scholar
23Kuykendall, T., Pauzauskie, P.J., Zhang, Y.F., Goldberger, J., Sirbuly, D., Denlinger, J., and Yang, P.D.: Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 3, 524 (2004).CrossRefGoogle ScholarPubMed
24Zhang, J., Zhang, L.D., Wang, X.F., Liang, C.H., Peng, X.S., and Wang, Y.W.: Fabrication and photoluminescence of ordered GaN nanowire arrays. J. Chem. Phys. 115, 5714 (2001).CrossRefGoogle Scholar
25Bae, S.Y., Seo, H.W., Park, J., Yang, H., Kim, H., and Kim, S.: Triangular gallium nitride nanorods. Appl. Phys. Lett. 82, 4564 (2003).CrossRefGoogle Scholar
26Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y.F., Goldberger, J., and Yang, P.D.: Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063 (2003).CrossRefGoogle Scholar
27Kioseoglou, J., Polatoglou, H.M., Lymperakis, L., Nouet, G., and Komninou, P.: A modified empirical potential for energetic calculations of planar defects in GaN. Comput. Mater. Sci. 27, 43 (2003).CrossRefGoogle Scholar
28Xu, B., Lu, A.J., Pan, B.C., and Yu, Q.X.: Atomic structures and mechanical properties of single-crystal GaN nanotubes. Phys. Rev. B 71, 125434 (2005).CrossRefGoogle Scholar
29Xu, B. and Pan, B.C.: The effect of atomic vacancies and grain boundaries on the mechanical properties of single-crystal GaN nanotubes. J. Appl. Phys. 99, 104314 (2006).CrossRefGoogle Scholar
30Parrinello, M. and Rahman, A.: Crystal-structure and pair potentials: A molecular dynamics study. Phys. Rev. Lett. 45, 1196 (1980).CrossRefGoogle Scholar
31Karpinski, J., Jun, J., and Porowski, S.: Equilibrium pressure of n-2 over GaN and high-pressure solution growth of GaN. J. Cryst. Growth 66, 1 (1984).CrossRefGoogle Scholar
32Van Vechten, J.A.: Quantum dielectric theory of electronegativity in covalent systems. III. Pressure-temperature phase diagrams, heats of mixing, and distribution coefficients. Phys. Rev. B 7, 1479 (1973).CrossRefGoogle Scholar
33Nord, J., Albe, K., Erhart, P., and Nordlund, K.: Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen and gallium nitride. J. Phys. Condens. Matter 15, 5649 (2003).CrossRefGoogle Scholar
34Harafuji, K., Tsuchiya, T., and Kawamura, K.: Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal. J. Appl. Phys. 96, 2504 (2004).Google Scholar
35Belonoshko, A.B.: Melting of corundum using conventional and two-phase molecular dynamics simulation method. Phys. Chem. Miner. 25, 138 (2005).CrossRefGoogle Scholar
36Northrup, J.E. and Neugebauer, J.: Inversion domain and stacking mismatch boundaries in GaN. Phys. Rev. B 53, R10 47 (1996).Google Scholar