Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T21:27:10.622Z Has data issue: false hasContentIssue false

Austenite grain growth in alumina-forming austenitic steel

Published online by Cambridge University Press:  02 May 2016

Qiuzhi Gao*
Affiliation:
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Fu Qu
Affiliation:
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Hailian Zhang
Affiliation:
School of Economics and Management, Yanshan University, Qinhuangdao, 066004, China
Qiang Huo
Affiliation:
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
*
a)Address all correspondence to this author. e-mail: neuqgao@163.com
Get access

Abstract

Microstructures and austenite grain growth behavior of the alumina-forming austenitic (AFA) steel subjected to normalizing and annealing at various temperatures were investigated. A modified kinetic model of austenite grain growth was constructed based on consideration of the heating history. Abnormal growth of austenite grain occurs when the temperature is increased to 1473 K, and some special large particles of the precipitates located at grain boundaries form when the sample is normalized at the temperature of 1523 K. Both NbC and NiAl precipitates are identified using routine x-ray diffraction. The fitted data based on the kinetic model used and the consideration of the heating history is in agreement with the changes in the austenite grain growth in the AFA steel even when there is abnormal grain growth. The grain growth exponents are shown to be 2.85 and 2.42 for normalizing and annealing, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brady, M.P., Yamamoto, Y., Santella, M.L., Maziasz, P.J., Pint, B.A., Liu, C., Lu, Z., and Bei, H.: The development of alumina-forming austenitic stainless steels for high-temperature structural use. JOM 60(7), 12 (2008).Google Scholar
Yamamoto, Y., Brady, M.P., Lu, Z.P., Maziasz, P.J., Liu, C.T., Pint, B.A., More, K.L., Meyer, H., and Payzant, E.A.: Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316(5823), 433 (2007).Google Scholar
Brady, M.P., Yamamoto, Y., Santella, M.L., and Walker, L.R.: Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels. Oxid. Met. 72(5–6), 311 (2009).Google Scholar
Yamamoto, Y., Brady, M.P., Lu, Z.P., Liu, C.T., Takeyama, M., Maziasz, P.J., and Pint, B.A.: Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates. Metall. Mater. Trans. A 38(11), 2737 (2007).Google Scholar
Trotter, G. and Baker, I.: The effect of aging on the microstructure and mechanical behavior of the alumina-forming austenitic stainless steel Fe–20Cr–30Ni–2Nb–5Al. Mater. Sci. Eng., A 627, 270 (2015).CrossRefGoogle Scholar
Yamamoto, Y., Brady, M.P., Santella, M.L., Bei, H., Maziasz, P.J., and Pint, B.A.: Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 42(4), 922 (2011).Google Scholar
Xu, X.Q., Zhang, X.F., Chen, G.L., and Lu, Z.P.: Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels. Mater. Lett. 65(21), 3285 (2011).Google Scholar
Moon, J., Lee, T.H., Heo, Y.U., Han, Y.S., Kang, J.Y., Ha, H.Y., and Suh, D.W.: Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel. Mater. Sci. Eng., A 645, 72 (2015).Google Scholar
Yamamoto, Y., Santella, M.L., Brady, M.P., Bei, H., and Maziasz, P.J.: Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 40(8), 1868 (2009).Google Scholar
Yamamoto, Y., Takeyama, M., Lu, Z.P., Liu, C.T., Evans, N.D., Maziasz, P.J., and Brady, M.P.: Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates. Intermetallics 16(3), 453 (2008).CrossRefGoogle Scholar
Xu, X.Q., Zhang, X.F., Sun, X.Y., and Lu, Z.P.: Roles of manganese in the high-temperature oxidation resistance of alumina-forming austenitic steels at above 800 °C. Oxid. Met. 78(5–6), 349 (2012).Google Scholar
Brady, M.P., Magee, J., Yamamoto, Y., Helmick, D., and Wang, L.: Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance. Mater. Sci. Eng., A 590, 101 (2014).Google Scholar
Zhou, D.Q., Xu, X.Q., Mao, H.H., Yan, Y.F., Nieh, T.G., and Lu, Z.P.: Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures. Mater. Sci. Eng., A 594, 246 (2014).Google Scholar
Trotter, G., Rayner, G., Baker, I., and Munroe, P.R.: Accelerated precipitation in the AFA stainless steel Fe–20Cr–30Ni–2Nb–5Al via cold working. Intermetallics 53, 120 (2014).Google Scholar
Gao, Q., Wang, Y., Gong, M., Qu, F., and Lin, X.: Non-isothermal austenitic transformation kinetics in Fe–10Cr–1Co alloy. Appl. Phys. A 122(2), 1 (2016).Google Scholar
Illescas, S., Fernández, J., and Guilemany, J.: Kinetic analysis of the austenitic grain growth in HSLA steel with a low carbon content. Mater. Lett. 62(20), 3478 (2008).Google Scholar
Kaijalainen, A.J., Suikkanen, P.P., Limnell, T.J., Karjalainen, L.P., Kömi, J.I., and Porter, D.A.: Effect of austenite grain structure on the strength and toughness of direct-quenched martensite. J. Alloys Comp. 577, S642 (2013).Google Scholar
Tian, L., Ao, Q., and Li, S.: Effect of austenitic state on microstructure and mechanical properties of martensite/bainite steel. J. Mater. Res. 29(07), 887 (2014).CrossRefGoogle Scholar
Wang, L., Wang, Z., and Lu, K.: Grain size effects on the austenitization process in a nanostructured ferritic steel. Acta Mater. 59, 3710 (2011).Google Scholar
Banerjee, K., Militzer, M., Perez, M., and Wang, X.: Nonisothermal austenite grain growth kinetics in a microalloyed X80 linepipe steel. Metall. Mater. Trans. A 41(12), 3161 (2010).CrossRefGoogle Scholar
Rios, P.R.: Abnormal grain growth development from uniform grain size distributions. Acta Mater. 45(4), 1785 (1997).Google Scholar
Rios, P.R.: Abnormal grain growth in pure materials. Acta Metall. Mater. 40(10), 2765 (1992).CrossRefGoogle Scholar
Garzón, C.M. and Ramirez, A.J.: Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel. Acta Mater. 54(12), 3321 (2006).Google Scholar
Adrian, H. and Pickering, F.B.: Effect of titanium additions on austenite grain growth kinetics of medium carbon V–Nb steels containing 0.008–0.018%N. Mater. Sci. Tech. 7(2), 176 (1991).Google Scholar
Manohar, P.A., Dunne, D.P., Chandra, T., and Killmore, C.R.: Grain growth predictions in microalloyed steels. ISIJ Int. 36(2), 194 (1996).Google Scholar
Gill, S.P.A. and Cocks, A.C.F.: A variational approach to two dimensional grain growth—II. Numerical results. Acta Mater. 44(12), 4777 (1996).CrossRefGoogle Scholar
Burke, J.E. and Turnbull, D.: Recrystallization and grain growth (Pergamon Press, London, 1952).Google Scholar
Beck, P.A., Kremer, J.C., Demer, L., and Holzworth, M.: Grain growth in high-purity aluminum and in an aluminum-magnesium alloy. Trans. Am. Inst. Min., Metall. Pet. Eng. 175, 372 (1948).Google Scholar
Uhm, S., Moon, J., Lee, C., Yoon, J., and Lee, B.: Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior. ISIJ Int. 44(7), 1230 (2004).Google Scholar
Moon, J., Lee, J., and Lee, C.: Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel. Mater. Sci. Eng., A 459(1–2), 40 (2007).Google Scholar
Pous-Romero, H., Lonardelli, I., Cogswell, D., and Bhadeshia, H.: Austenite grain growth in a nuclear pressure vessel steel. Mater. Sci. Eng., A 567, 72 (2013).Google Scholar
Li, D., Shinozaki, K., Harada, H., and Ohishi, K.: Investigation of precipitation behavior in a weld deposit of 11Cr–2W ferritic steel. Metall. Mater. Trans. A 36(1), 107 (2005).Google Scholar
Gao, Q.Z., Gong, M.L., Wang, Y.L., Qu, F., and Huang, J.N.: Phase transformation and properties of Fe–Cr–Co alloys with low cobalt content. Mater. Trans. 56(9), 1491 (2015).Google Scholar
Staśko, R., Adrian, H., and Adrian, A.: Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel. Mater. Charact. 56(4–5), 340 (2006).Google Scholar
Hillert, M.: On the theory of normal and abnormal grain growth. Acta Metall. 13(3), 227 (1965).Google Scholar
Zhou, T., O'malley, R.J., and Zurob, H.S.: Study of grain-growth kinetics in delta-ferrite and austenite with application to thin-slab cast direct-rolling microalloyed steels. Metall. Mater. Trans. A 41(8), 2112 (2010).Google Scholar
Yue, C., Zhang, L., Liao, S., and Gao, H.: Kinetic analysis of the austenite grain growth in GCr15 steel. J. Mater. Eng. Perform. 19(1), 112 (2010).Google Scholar
Militzer, M., Hawbolt, E.B., Meadowcroft, T.R., and Giumelli, A.: Austenite grain growth kinetics in Al-killed plain carbon steels. Metall. Mater. Trans. A 27(11), 3399 (1996).CrossRefGoogle Scholar
Atkinson, H.V.: Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 36(3), 469 (1988).Google Scholar
Gil, F., Manero, J., and Planell, J.: Effect of grain size on the martensitic transformation in NiTi alloy. J. Mater. Sci. 30(10), 2526 (1995).CrossRefGoogle Scholar