Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-30T23:34:38.607Z Has data issue: false hasContentIssue false

Bactericidal efficacy of electrospun pure and Fe-doped titania nanofibers

Published online by Cambridge University Press:  31 January 2011

Ryan Hershey
Affiliation:
Department of Chemical Engineering, The University of Toledo, Toledo, Ohio 435606-3390
Saqib Ali
Affiliation:
The Ohio State University, Columbus, Ohio 43210-1173
Vijay Goel
Affiliation:
Departments of Bioengineering and Orthopedic Surgery, The University of Toledo, Toledo, Ohio 435606-3390
Get access

Abstract

This paper reports the development of nonwoven nanofibers of pure and iron-doped titanium dioxide (TiO2) and evaluation of their antimicrobial attributes for using them as disinfectant gauze for wound healing upon brief activation by ultraviolet/infrared (UV/IR) illumination. It was found that the fibers exhibited superior bactericidal affinity when exposed briefly (3–12 s) to either multiphoton laser or infrared radiations. On the other hand, exposure to a UV beam for up to 20 min was not effective in mitigating the bacterial colonization of the Escherichia coli.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ulbrich, W., Lamprecht, A.Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J. R. Soc. Interface 7, S55 (2010)Google Scholar
2.Silva, G.A.Neuroscience nanotechnology: Progress, opportunities and challenges. Nat. Rev. Neurosci. 7, 65 (2006)CrossRefGoogle ScholarPubMed
3.Moghimi, S.M., Hunter, A.C., Murray, J.C.Nanomedicine: Current status and future prospects. Fed. Am. Soc. Exp. Biol. J. 19, 311 (2005)Google Scholar
4.Moghimi, S.M., Hunter, A.C., Murray, J.C.Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283 (2001)Google Scholar
5.Pathak, S., Cao, E., Davidson, M.C., Jin, S., Silva, G.A.Quantum dot applications to neuroscience: New tools for probing neurons and glia. J. Neurosci. 26, 1893 (2006)CrossRefGoogle ScholarPubMed
6.Farokhzad, O.C., Cheng, J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P., Langer, R.Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Nat. Acad. Sci. U.S.A. 103, 6315 (2006)Google Scholar
7.Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J.P.Microscale technologies for tissue engineering and biology. Proc. Nat. Acad. Sci. U.S.A. 103, 2480 (2006)Google Scholar
8.Farokhzad, O.C., Khademhosseini, A., Jon, S., Hermmann, A., Cheng, J., Chin, C., Kiselyuk, A., Teply, B., Eng, G., Langer, R.Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal. Chem. 77, 5453 (2005)Google Scholar
9.McGowan, D.P., Goel, V.K.Aching backs get support from FDA, but not payors. Am. Assoc. Orthoped. Surg. Now 1, 1 (2007)Google Scholar
10.Azad, A-M., McKelvey, S., Al-Firdaus, Z.Fabrication of antimicrobial titania nanofibers by electrospinning. Adv. Mater. Manufac. Testing Inf. Anal. Center Quart. 3, 3 (2008)Google Scholar
11.Lee, B.W., Choi, G.S.Hydrothermal synthesis of barium titanate powders from a co-precipitated precursor. J. Ceram. Proc. Res. 4, 151 (2003)Google Scholar
12.Webster, T.J., Taylor, E.N.The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int. J. Nanomed. 4, 145 (2009)CrossRefGoogle Scholar
13.Azad, A-M.Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Eng., A 435–436, 468 (2006)CrossRefGoogle Scholar
14.Azad, A-M.Fabrication of yttria-stabilized zirconia nanofibers by electrospinning. Mater. Lett. 60, 67 (2006)Google Scholar
15.Azad, A-M., Noibi, M., Ramachandran, M.Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bull. Polish Acad. Sci. 55, 195 (2007)Google Scholar
16.Chen, Y., MacDonald, P.J., Skinner, J.P., Patterson, G.H., Müller, J.D.Probing nucleocytoplasmic transport by two-photon activation of PA-GFP. Microsc. Res. Tech. 69, 220 (2006)CrossRefGoogle ScholarPubMed
17.Koseki, H., Shiraishi, K., Tsurumoto, T., Asahara, T., Baba, K., Taoda, H., Terasaki, N., Shindo, H.Bactericidal performance of photocatalytic titanium dioxide particle mixture under ultraviolet and fluorescent light: An in vitro study. Surf. Interface Anal. 41, 771 (2009)CrossRefGoogle Scholar
18.Hamal, D.B., Klabunde, K.J.Synthesis, characterization, and visible light activity of new nanoparticle. J. Colloid Interface Sci. 311, 514 (2007)CrossRefGoogle ScholarPubMed
19.Yu, J.C., Ho, W., Lin, J., Yip, H., Wong, P.K.Photocatalytic activity, antibacterial effect and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ. Sci. Technol. 37, 2296 (2003)Google Scholar
20.Wang, Y.Q., Yu, X.J., Sun, D.Z.Synthesis, characterization, and photocatalytic activity of TiO2−xNx nanocatalyst. J. Hazard. Mater. 144, 328 (2007)Google Scholar
21.Oka, Y., Kim, W-C., Yoshida, T., Hirashima, T., Mouri, H., Urade, H., Itoh, Y., Kubo, T.Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. J. Biomed. Mater. Res. Part B 86, 530 (2008)Google Scholar
22.Ding, X-Z., Liu, X-H., He, Y-Z.Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders. J. Mater. Sci. Lett. 15, 1789 (1996)Google Scholar
23.Shannon, R.D., Pask, J.A.Kinetics of the anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965)Google Scholar
24.MacKenzie, K.J.D.The calcination of titania: IV. The effect of addition on the anatase-rutile transformation. Trans. Brit. Ceram. Soc. 74, 29 (1975)Google Scholar
25.Suyama, Y., Kato, A.The inhibitory effect of SiO2 on the anatase-rutile transition of TiO2. J. Ceram. Soc. Jpn. 86, 119 (1978)Google Scholar
26.Hishita, S., Takata, M., Yanagida, H.Inhibition of anatase-rutile transformation due to Nb2O5 addition. J. Ceram. Soc. Jpn. 86, 631 (1978)Google Scholar
27.Eppler, R.A.Effect of antimony oxide on the anatase-rutile transformation in titanium dioxide. J. Am. Ceram. Soc. 70, C64 (1987)CrossRefGoogle Scholar
28.Oliveri, G., Ramis, G., Busca, G., Escribano, V.S.Thermal stability of vanadia-titania catalysts. J. Mater. Chem. 3, 1239 (1993)CrossRefGoogle Scholar
29.Ding, X-Z., Qi, Z-A., He, Y-Z.Effect of tin dioxide doping on rutile phase formation in sol–gel-derived nanocrystalline titania powders. Nanostruct. Mater. 4, 663 (1994)CrossRefGoogle Scholar
30.Yang, J., Huang, Y.X., Ferreira, J.M.F.Inhibitory effect of alumina additive on the titania phase transformation of a sol–gel-derived powder. J. Mater. Sci. Lett. 16, 1933 (1997)Google Scholar
31.Yang, J., Ferreira, J.M.F.On the titania phase transition by zirconia additive in a sol–gel-derived powder. Mater. Res. Bull. 33, 389 (1998)Google Scholar
32.Rao, C.N.R., Turner, A., Honing, J.M.Some observations concerning the effect of impurities on the anatase-rutile transition. J. Phys. Chem. Solids 11, 173 (1959)Google Scholar
33.Sullivan, W.F., Coleman, J.R.Effect of sulfur trioxide on the anatase-rutile transformation. J. Inorg. Nucl. Chem. 24, 645 (1962)Google Scholar
34.Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., MacKenzie, K.J.D.Effect of silica additive on the anatase-rutile phase transition. J. Am. Ceram. Soc. 84, 1591 (2001)Google Scholar
35.MacKenzie, K.J.D.The calcination of titania: VI. The effect of reaction atmosphere and electric fields on the anatase-rutile transformation. Trans. J. Brit. Ceram. Soc. 74, 121 (1975)Google Scholar
36.Gamboa, J.A., Pasquevich, D.M.Effect of chlorine atmosphere on the anatase-rutile transformation. J. Am. Ceram. Soc. 75, 2934 (1992)CrossRefGoogle Scholar
37.Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., Dickey, E.C.Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003)Google Scholar
38.Li, Y., White, T., Lim, S.H.Structural control and its influence on photoactivity and phase transformation of titania nanoparticles. Rev. Adv. Mater. Sci. 5, 211 (2003)Google Scholar
39.Sen, S., Ram, M.L., Roy, S., Sarkar, B.K.The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res. 14, 841 (1999)CrossRefGoogle Scholar
40.Spurr, R.A., Myers, H.Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957)Google Scholar