Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T02:11:24.572Z Has data issue: false hasContentIssue false

Ball milling-induced pyrochlore-to-tungsten bronze phase transition in RbNbWO6

Published online by Cambridge University Press:  31 January 2011

Carlos A. Figueroa
Affiliation:
Universidade de Caxias do Sul, 95070-560 Caxias do Sul–RS, Brazil
J.A.H. da Jornada
Affiliation:
Inmetro, 25250-020 Xerém, Duque de Caxias–RJ, Brazil; and Universidade Federal do Rio Grande do Sul, Instituto de Física, 91501-970 Porto Alegre–RS, Brazil
Claudio A. Perottoni*
Affiliation:
Universidade de Caxias do Sul, 95070-560 Caxias do Sul–RS, Brazil; and Universidade Federal do Rio Grande do Sul, Instituto de Física, 91501-970 Porto Alegre–RS, Brazil
*
a) Address all correspondence to this author. e-mail: caperott@ucs.br
Get access

Abstract

A set of Bragg peaks consistent with a hexagonal Bravais lattice was observed in the x-ray powder diffraction pattern of cubic pyrochlore rubidium tungstoniobate (RbNbWO6) subjected to high-energy ball milling. The calculated lattice parameters for this hexagonal phase are similar to those of compounds with tungsten bronze structure. In fact, the powder pattern of the hexagonal phase could be refined with a structural model based on the tungsten bronze structure. The hexagonal phase produced by high-energy ball milling of RbNbWO6 transforms back to the pyrochlore structure upon heating to 773 K in air. A similar phase was obtained by ball milling the mixture RbNbWO6 + WO3, but, in this case, the stoichiometric hexagonal tungsten bronze compound thus obtained remained stable up to 1273 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Murphy, D.W., Dye, J.L., and Zahurak, S.M.: Alkali-metal insertion in the pyrochlore structure. Inorg. Chem. 22, 3679 (1983).Google Scholar
2Chakoumakos, B.C.: Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem. 53, 120 (1984).Google Scholar
3Perottoni, C.A. and Jornada, J.A.H. da: Pressure induced water insertion in the defect pyrochlore NH4NbWO6. Phys. Rev. Lett. 78, 2991 (1997).Google Scholar
4Barnes, P.W., Woodward, P.M., Lee, Y., Vogt, T., and Hriljac, J.A.: Pressure-induced cation migration and volume expansion in the defect pyrochlores ANbWO6 (A = NH4+,Rb+,H+,K+). J. Am. Chem. Soc. 125, 4572 (2003).Google Scholar
5Dahm, T. and Ueda, K.: NMR relaxation and resistivity from rattling phonons in pyrochlore superconductors. Phys. Rev. Lett. 99, 187003–1-4 (2007).CrossRefGoogle ScholarPubMed
6Mandal, B.P., Banerji, A., Sathe, V., Deb, S.K., and Tyagi, A.K.: Order–disorder transition in Nd2-yGdyZr2O7 pyrochlore solid solution: An x-ray diffraction and Raman spectroscopic study. J. Solid State Chem. 180, 2643 (2007).Google Scholar
7Mandal, B.P., Deshpande, S.K., and Tyagi, A.K.: Ionic conductivity enhancement in Gd2Zr2O7 pyrochlore by Nd doping. J. Mater. Res. 23, 911 (2008).Google Scholar
8Mandal, B.P., Garg, N., Sharma, S.M., and Tyagi, A.K.: Preparation, XRD and Raman spectroscopic studies on new compounds RE2Hf2O7 (RE = Dy, Ho, Er, Tm, Lu, Y): Pyrochlores or defect-fluorite? J. Solid State Chem. 179, 1990 (2006).Google Scholar
9Eberman, K.W., Wuensch, B.J., and Jorgensen, J.D.: Order–disorder transformations induced by composition and temperature change in (SczYb1-z)2Ti2O7 pyrochlores, prospective fuel-cell materials. Solid State Ionics 148, 521 (2002).Google Scholar
10Raghuveer, V. and Viswanathan, B.: Nanocrystalline pyrochlore bonded to proton exchange membrane electrolyte as electrode material for oxygen reduction. J. Math. Sci. 40, 6249 (2005).CrossRefGoogle Scholar
11Nair, K.R., Rao, P.P., Raj, A.V., Joseph, S.K., Chandran, M.R., and Koshy, P.: New family of dielectric materials in C–Y–Ti–Nb–O system having pyrochlore type structure. J. Am. Ceram. Soc. 90, 3656 (2007).Google Scholar
12Takeda, T., Kanno, R., Kawamoto, Y., Takeda, Y., and Yamamoto, O.: New cathode materials for solid oxide fuel cells ruthenium pyrochlores and perovskites. J. Electrochem. Soc. 147, 1730 (2000).Google Scholar
13Moreno, K.J., Guevara-Liceaga, M.A., Fuentes, A.F., GarcíaBarriocanal, J., León, C., and Santamaría, J.: Room-temperature synthesis and conductivity of the pyrochlore type Dy2(Ti1-yZry)2O7(09y91) solid solution. J. Solid State Chem. 179, 928 (2006).Google Scholar
14Ogura, H., Ito, Y., Kurajo, T., Tanaka, Y., and Shirogami, T.: Increase in thermal stability of MgO, CaO added NH4NbWO6 solid electrolyte. Solid State Ionics 79, 188 (1995).Google Scholar
15Perottoni, C.A., Haines, J., and Jornada, J.A.H. da: Crystal structure and phase transition in the defect pyrochlore NH4NbWO6. J. Solid State Chem. 141, 537 (1998).Google Scholar
16Sleight, A.W., Zumsteg, F.C., Barkley, J.R., and Gulley, J.E.: Acentricity and phase transitions for some AM2X6 compounds. Mater. Res. Bull. 13, 1247 (1978).Google Scholar
17Pannetier, J.: Phase transition in RbNbWO6: The pyrochlore structure revisited. Solid State Commun. 34, 405 (1980).CrossRefGoogle Scholar
18Bydanov, N.N., Chernaya, T.S., Muradyan, L.A., Sarin, V.A., Rider, E.Á. and Yanovskii, V.K.: Neutron-diffraction refinement of atomic structures of crystals of RbNbWO6 and TlNbWO6. Sov. Phys. Crystallogr. 32, 363 (1987).Google Scholar
19Chernaya, T.S., Bydanov, N.N., Muradyan, L.A., Sarin, V.A., and Simonov, V.I.: Anomalous thermal vibrations in superionic RbNbWO6 and TlNbWO6. Sov. Phys. Crystallogr. 33, 40 (1988).Google Scholar
20Maczka, M., Ko, J.H., Wlosewicz, D., Tomaszewski, P.E., Kojima, S., Hanuza, J., and Majchrowski, A.: Heat capacity and dielectric studies of ferroelectric superionic conductor RbNbWO6. Solid State Ionics 167, 309 (2004).Google Scholar
21Maczka, M., Ko, J.H., Kojima, S., Hanuza, J., and Majchrowski, A.: Brillouin scattering in RbNbWO6. J. Appl. Phys. 94, 3781 (2003).Google Scholar
22Perottoni, C.A.: Ph.D. Thesis, Instituto de Fásica, Universidade Federal do Rio Grande do Sul, Brazil, 2000.Google Scholar
23Muccillo, R., Franchi, L., Santos, J.T., Cosentino, I.C., and Muccillo, E.N.: Phase amorphization during high-energy milling of mixtures of zirconia with yttria or ceria powders. Mater. Sci. Forum 498/499, 331 (2005).Google Scholar
24Kong, L.B., Ma, J., Zhu, W., and Tan, O.K.: Preparation of PMN powders and ceramics via a high-energy ball milling process. J. Mater. Sci. Lett. 20, 1241 (2001).CrossRefGoogle Scholar
25Kong, L.B., Ma, J., Zhu, W., and Tan, O.K.: Preparation of PMNPT ceramics via a high-energy ball milling process. J. Alloys Compd. 236, 242 (2002).Google Scholar
26Kong, L.B., Zhang, T.S., Ma, J., and Boey, F.: Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 53, 207 (2008).Google Scholar
27Begin-Colin, S., Le Caër, G., Zandona, M., Bouzy, E., and Malaman, B.: Influence of the nature of milling media on phase transformations induced by grinding in some oxides. J. Alloys Compd. 227, 157 (1995).Google Scholar
28Brunner, D.G. and Tomandl, G.: A new proton-conducting ceramic. II. Preparation of proton-conducting NH4NbWO6 and NH4TaWO6. Adv. Ceram. Mater. 2, 794 (1987).CrossRefGoogle Scholar
29Maurice, D.R. and Courtney, T.H.: The physics of mechanical alloying: A first report. Metall. Trans. A 21, 289 (1990).Google Scholar
30Desgreniers, S. and Lagarec, K.: XRDA: A program for energy-dispersive x-ray diffraction analysis on a PC. J. Appl. Crystallogr. 27, 432 (1994).Google Scholar
31Shirley, R.: The CRYSFIRE System for Automatic Powder Indexing: User's Manual (The Lattice Press, Guildford, Surrey, UK, 2000).Google Scholar
32Rodriguez-Carvajal, J.: FULLPROF: A program for Rietveld refinement and pattern matching analysis, in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, France, 1990), p. 127.Google Scholar
33Cusatis, C., Franco, M.K., Kakuno, E., Giles, C., Morelháo, S., Mello, V. Jr, and Mazzaro, I.: A versatile x-ray diffraction station at LNLS (Brazil). J. Synchrotron Radiat. 5, 491 (1998).Google Scholar
34Deschanvres, A., Frey, M., Raveau, B., and Thomazeau, J.C.: Substitution of tungsten by tantalum and niobium in potassium tungstates. Evidence for new phases Kx(NbxW1-x)O3.Kx(TaxW1-x) O3. Bull. Soc. Chim. Fr. 9, 3519 (1968).Google Scholar
35Yanovsky, V.K., Voronkova, V.I., and Klimova, I.P.: Ferroelectrics with the structure of hexagonal tungsten bronze type. Ferroelectrics 48, 239 (1983).Google Scholar
36Gesing, T.M., Ruscher, C.H., and Hussain, A.: A crystal structure of rubidium niobium tungsten bronzes, RbxNbyW1-yO3 (x approximate to 0.3; y = 0.13, 0.19). Z. Kristallogr. 216, 37 (2001).Google Scholar
37Delhez, R., Keijser, T.H. de, Langford, J.I., Louár, D., Mittemeijer, E.J., and Sonneveld, E.J.: Crystal imperfection broadening and peak shape in the Rietveld method, in The Rietveld Method (Oxford University Press, 1996), p. 132.Google Scholar
38Magneli, A.: Studies on the hexagonal tungsten bronzes of potassium, rubidium, and caesium. Acta Chem. Scand. Ser. A 7, 315 (1953).Google Scholar
39Barker, W.W., Graham, J., Knop, O., and Brisse, F.: Crystal chemistry of oxide pyrochlores, in The Chemistry of Extended Defects in Non-metallic Solids (North-Holland Publ. Co., Amsterdam, 1970), p. 198.Google Scholar
40Graham, J., Wadsley, A.D., Weymuth, J.H., and Williams, L.S.: A new ternary oxide, ZrW2O8. J. Am. Ceram. Soc. 42, 570 (1959).Google Scholar
41Chang, H.Y., Sivakumar, T., Ok, K.M., and Halasyamani, S.: Polar hexagonal tungsten bronze-type oxides: KNbW2O9, RbNbW2O9, and KTaW2O9. Inorg. Chem. 47, 8511 (2008).Google Scholar