Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:55:38.942Z Has data issue: false hasContentIssue false

Bandfilling and structural stability of trialuminides: YAl3, ZrAl3, and NbAl3

Published online by Cambridge University Press:  31 January 2011

Jian-hua Xu
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3112, and Shanghai Institute of Metallurgy, Academy of Sciences of China, Shanghai 200050, China
A.J. Freeman
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3112, and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The cohesive properties and electronic structures versus the structural stability of transition-metal trialuminides YAl3, ZrAl3, and NbAl3 in their cubic L12, tetragonal DO22, and naturally stable forms (i.e., the DO19 structure for YAl3 and the DO23 structure for ZrAl3) have been investigated using a total energy local-density approach. The variation of structural stability with transition-metal constituent can be simply understood in terms of the bandfilling of the bonding states in the rigid band sense, with the valence electrons gradually filling the bonding states on going from YAl3, ZrAl3 to NbAl3. This leads to a phase transition from the cubic L12 structure (for YAl3) to the tetragonal DO22 structure (for NbAl3). It is argued that this criterion may also apply to explain the variation of the structural stability of other transition-metal compounds (such as transition-metal carbides, nitrides, silicides, etc.) that are dominated by covalent interactions between the transition-metal d and the metalloid p states.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lipsitt, H. A., in Properties of Advanced High Temperature Alloys, edited by Allen, S. M., Pelloux, R. M., and Widmer, R. (ASM, Metals Park, OH, 1986), p. 157; High Temperature Aluminides & Intermetallics, edited by S. H. Whang, C. T. Liu, D. P. Pope, and J. O. Stiegler (Proc. 1989 TMS Symp., PA, 1990); K. S. Kumar, Ternary Intermetallics in Aluminum-Refractory Metal-X Systems (X = V, Vr, Mn, Fe, Co, Ni, Cu, Zn), International Materials Review 35, 293 (1990).Google Scholar
2.Fine, M. E., Metall. Trans. A6, 625 (1975); E. J. Kubel, Adv. Mater. Pro. Metal Prog. 130, 43 (1986).CrossRefGoogle Scholar
3.Colgan, E. G., Mater. Sci. Rep. 5, 1 (1990).CrossRefGoogle Scholar
4.Pearson, W. B., A Handbook of Lattice Spacing and Structures of Metals and Alloys (Pergamon, Oxford, 1967), Vol. 2; Structure Reports, edited by W. B. Pearson (International Union of Crystallography, Utrecht, 1967), Vol. 32A, p. 14.Google Scholar
5.Xu, Jian-hua and Freeman, A. J., Phys. Rev. B 40, 11927 (1989).CrossRefGoogle Scholar
6.Andersen, O. K., Phys. Rev. B 12, 3036 (1975).CrossRefGoogle Scholar
7.Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
8.Hedin, L. and Lundqvist, B., J. Phys. C4, 2064 (1971).Google Scholar
9.Jansen, H. J. F. and Freeman, A. J., Phys. Rev. B 30, 561 (1984).Google Scholar
10.Xu, Jian-hua, Oguchi, T., and Freeman, A. J., Phys. Rev. B 35, 6940 (1987).CrossRefGoogle Scholar
11.Xu, Jian-hua and Freeman, A. J., Phys. Rev. B 41, 12553 (1990).Google Scholar
12.Hong, T., Watson-Yang, T. J., Freeman, A. J., Oguchi, T., and Xu, Jianhua, Phys. Rev. B 41, 12462 (1990).CrossRefGoogle Scholar
13.Xu, Jian-hua, Acta Phys. Sini. 37, 1715 (1988); Jian-hua Xu, in Atomic Scale Calculations in Materials Science, edited by J. Tersoff, D. Vanderbilt, and V. Vitek (Mater. Res. Soc. Symp. Proc. 141, Pittsburgh, PA, 1989), p. 141.Google Scholar
14. A preliminary report about YAI3 was given previously [Xu, Jian-hua, Acta Phys. Sini. 39, 278 (1990)].Google Scholar
15. The structural stability of Ll2, DO22, and DO23 for YA13, ZrAl3, and NbAl3 has been reported by Carlsson, A. E. and Meschter, P. J., J. Mater. Res. 4, 1060 (1989); they did not give the experimentally observed relative stability of DO23 vs DO22 in ZrAl3.CrossRefGoogle Scholar
16.Raman, A. and Schubert, K., Z. Metallk. 56, 40 (1965); ibid. 56, 99 (1965); A. Seibold, ibid. 72, 712 (1981).Google Scholar
17.Zedalis, M. S., Thesis, Northwestern University (1986); Y. N. Chen, M. E. Fine, J. R. Weertman, and R. E. Lewis, Scripta Metall. 21, 1003 (1987).Google Scholar
18.Subramanian, P. R. and Mendiratta, M. G., Mater. Res. Soc. Fall Meeting, Boston, MA, November, 1988; F. R. Frasier and M. J. Kaufman, ibid.Google Scholar
19.Structure Data of Elements and Intermetallic Phase, New Series, edited by Hellwege, K-H. (Landolt Bornstein, Springer-Verlag, Berlin, 1971).CrossRefGoogle Scholar
20.Snyder, R. L., Yttrium-aluminium alloy studies, Thesis, Iowa State University of Science and Technology, Ames, IA, 1960.Google Scholar
21.Ohashi, T. and Ichikawa, R., Metall. Trans. 3, 2300 (1972).Google Scholar
22.Metals Reference Book, edited by Brandes, E. A., 6th ed. (Butterworth's, London, 1983).Google Scholar
23.Rechkin, V. W., Lamikhov, L. K., and Samsonova, T. I., Kristallografiya 9, 405 (1964) [Sov. Phys. Crystallogr. 9, 325 (1964)].Google Scholar
24.Kubaschewski, O., Evans, E. L., and Alcock, C. B., Metallurgical Thermochemistry, 4th ed. (Pergamon, Oxford, 1967).Google Scholar
25.Kittel, C., Introduction to Solid State Physics, 5th ed. (1976), p. 31 and p. 85.Google Scholar
26.Coehoorn, R., Phys. Rev. B 39, 13071 (1989).CrossRefGoogle Scholar
27.Ran, Qingsheng, Lukas, H. L., Effenberg, G., and Petzow, G., J. Less-Comm. Metals 146, 213 (1989).CrossRefGoogle Scholar
28.Colinet, C., Pasturel, A., and Buschow, K. H. J., Physica B (Amsterdam) 150, 397 (1988).CrossRefGoogle Scholar
29.Schneider, A., Klotz, H., Stendel, J., and Strauss, G., Pure Appl. Chem. 2, 13 (1961).CrossRefGoogle Scholar
30.Zedalis, M. S., Ghate, M. V., and Fine, M. E., Scripta Metall. 19, 647 (1985).CrossRefGoogle Scholar
31.Noble, B., Harris, S. J., and Dinsdale, K., J. Mater. Sci. 17, 461 (1982).Google Scholar
32.Schneibel, J. H., Becher, P. F., and Horton, J. A., J. Mater. Res. 3, 1272 (1988).CrossRefGoogle Scholar
33.Lu, Z. W., Singh, D. J., and Krakauer, H., Phys. Rev. B 39, 4921 (1989).CrossRefGoogle Scholar
34.Pasturel, A., Colinet, C., and Hicter, P., Physica B + C 132B, 177 (1985).CrossRefGoogle Scholar
35.Gelatt, C. D., Williams, A. R., and Moruzzi, V. L., Phys. Rev. B 27, 2005 (1983).CrossRefGoogle Scholar
36. From the sense of filling the bonding states of the valence electrons we may consider the integral , which is the leading term of the total energy (cf. Ref. 27); it means that not only Wocc(or E-axis) but also N(E) (density of states axis) in the reciprocal k space are taken into account as well to determine the relative stability among the different phases. Hence, the relative phase stability between phase A and B can be calculated from [Massalski, T. B., Metall. Trans. 20B, 445 (1989)]. However, it has only qualitative meaning as Wocc.Google Scholar
37.Hoffmann, R., Rev. Mod. Phys. 60, 601 (1988).CrossRefGoogle Scholar
38.Liu, A. Y. and Cohen, M. L., Solid State Commun. 67, 907 (1988); A. Y. Liu, R. M. Wentzcovitch, and M. L. Cohen, Phys. Rev. 38, 9483 (1988).CrossRefGoogle Scholar
39.Franzen, H. F., Physical Chemistry of Inorganic Crystalline Solids (Springer-Verlag, 1986), p. 135.Google Scholar
40.Alekseev, E. S. and Tatarchenko, A. F., Solid State Commun. 73, 569 (1990).CrossRefGoogle Scholar
41.Goldschmidt, H. J., Interstitial Transition Metal Compounds (Plenum, Butterworth's, New York, 1967).Google Scholar
42.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1986), Vol. 3.Google Scholar
43.Pickett, W. E., Klein, B. M., and Papaconstantopoeous, D. A., Physica 107, 667 (1981); You-Xiang Zhao and Shou an He, Solid State Commun. 45, 281 (1983).Google Scholar
44.Watanabe, R., Yazaki, I., Igarashi, Y., Toyota, N., and Noto, K., J. Mater. Sci. Lett. 5, 255 (1986); L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, Thin Solid Films 166, 149 (1988).Google Scholar
45.Chen, Jing, Boyer, L. L., Krakauer, H., and Mehl, M. J., Phys. Rev. B 37, 3295 (1988).CrossRefGoogle Scholar
46.Christensen, N. E., Phys. Rev. B 42, 7198 (1990).CrossRefGoogle Scholar