Published online by Cambridge University Press: 31 January 2011
The addition of BaTiO3 to Pb(Ni1/3Nb2/3)O3 has been confirmed to vary the formation kinetics of the perovskite solid solutions of Pb(Ni1/3Nb2/3)O3-BaTiO3, and to suppress the generation of the pyrochlore phase. A semiquantitatively calculated reaction conversion verified that increasing the BaTiO3 content significantly accelerated the formation of the perovskite solid solutions. The formed solid solutions of Pb(Ni1/3Nb2/3)O3-BaTiO3 (up to 90 mol% of BaTiO3) exhibited a cubic symmetry at room temperature. The lattice parameter monotonously decreased with an increase in the BaTiO3 content. The structural stability of the perovskite phase was found to be enhanced by the addition of BaTiO3 as well. The formed solid solutions were able to maintain the perovskite structure without decomposition when heated up to 1250 °C. The frequency dependence of the apparent Curie temperature and the diffuseness of the dielectric peak of sintered specimens were increased with increasing the BaTiO3 content up to 50 mol%. Whereas with further addition, the relaxor characteristics in the specimens became obscure, associated with lower frequency dependence and less broadening of the dielectric maximum. The largest broadening of the dielectric peak occurred at x = 0.5, implying that this composition exhibited the most disordered structure, which is probably related to the most random arrangement of B-site cations in oxygen octahedran.