Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T23:06:04.726Z Has data issue: false hasContentIssue false

BaTiO3 formation by thermal decomposition of a (BaTi)-citrate polyester resin in air

Published online by Cambridge University Press:  31 January 2011

P. Durán
Affiliation:
Instituto de Ceraámica y Vidrio (CSIC), Electroceramics Department, 28500-Arganda del Rey, Madrid, Spain
F. Capel
Affiliation:
Instituto de Ceraámica y Vidrio (CSIC), Electroceramics Department, 28500-Arganda del Rey, Madrid, Spain
J. Tartaj
Affiliation:
Instituto de Ceraámica y Vidrio (CSIC), Electroceramics Department, 28500-Arganda del Rey, Madrid, Spain
C. Moure
Affiliation:
Instituto de Ceraámica y Vidrio (CSIC), Electroceramics Department, 28500-Arganda del Rey, Madrid, Spain
Get access

Abstract

Barium titanate nanosized powders were prepared by a slightly modified Pechini method. The obtained polymerized resin was used as the precursor for BaTiO3 powder production. DTA TG thermal analysis indicated that thermal decomposition of the precursors proceeds through four major step processes: (i) dehydration reaction; (ii) combustion reactions; (iii) intermediate phases formation; (iv) decarbonation of the intermediate to give BaTiO3. X-ray diffractometry (XRD) and Raman spectroscopy results indicated that, depending on the heating rate, the BaTiO3 formation took place via a predominant solid-state reaction between nanosized BaCO3 and amorphous TiO2 (TiO2−x) when crystallized by a low-heating rate (1.5 °C/min), although a small amount of a quasi-amorphous intermediate phase was also present. BaTiO3 crystallization by rapid heating rate (5 °C/min) took place through a quasi-amorphous intermediate phase formation as the main rate-controlling factor for the crystallization process. The fact that the low heating rate minimizes the intermediate phase content indicates the strong influence of the thermal heating on the kinetics of the involved transformation or in the mechanism. Although XRD results seem to indicate the formation of pseudocubic BaTiO3 as the final reaction product, the Raman spectra indicated as more probable the formation of a mixture of an oxygen-deficient hexagonal and tetragonal BaTiO3 phases below 700 °C. Above that temperature the tetragonal BaTiO3 was the only phase present. As-prepared BaTiO3 strongly agglomerated powders were relatively sinter active, leading to dense ceramic bodies (≥95% of the theoretical value). Microstructural (grain size approximately 1 mm) and room-temperature dielectric properties (ετ ≈ 2000 and tan δ ≤ 2%) at 10 kHz indicated that the obtained powders have to be optimized.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Phule, P.P. and Risbud, S.H., J. Mater. Sci. 25, 1169 (1990).CrossRefGoogle Scholar
2.Hilton, A.D. and Frost, R., Key Eng. Mater. 66, 145 (1992).CrossRefGoogle Scholar
3.Kinohita, K. and Yamaji, A., J. Appl. Phys. 47, 371 (1976).CrossRefGoogle Scholar
4.Hennings, D., Int. J. High Technol. Ceram. 3, 91 (1987).CrossRefGoogle Scholar
5.Caboche, G. and Niepce, J.C., in Ceramics Transactions, Vol. 32, Dielectric Ceramics: Processing Properties and Applications, edited by Nair, K.M., Guha, J.P., and Okamoto, A.. (Amer. Ceram. Soc., Westerville, OH, 1993), p. 339.Google Scholar
6.Arlt, G., Bennings, D., and de With, G., J. Appl. Phys. 58, 1619 (1985).CrossRefGoogle Scholar
7.Arlt, G., Ferroelectrics 104, 217 (1990).CrossRefGoogle Scholar
8.Fang, T.T., Hsieh, H.L., and Siuau, F.S., J. Am. Ceram. Soc. 76, 1205 (1993).CrossRefGoogle Scholar
9.Takeuchi, T., Tabuchi, M., Kageyama, H., and Suyama, Y., J. Am. Ceram. Soc. 82, 939 (1999).CrossRefGoogle Scholar
10.Mazdiyasni, K.S., Dolloff, R.T., and Smith, J.S. II, J. Am. Ceram. Soc. 52, 523 (1969).CrossRefGoogle Scholar
11.Savoskina, A.I., Limar, T.F., and Kisel, N.G., Izv. Akad. Nauk. SSSR, Neorg. Mater. 11, 1245 (1975).Google Scholar
12.Fang, T.T. and Lin, H.B., J. Am. Ceram. Soc. 72, 1899 (1989).CrossRefGoogle Scholar
13.Stockenhuber, M., Mayer, H., and Lercher, J.A., J. Am. Ceram. Soc. 76, 1185 (1993).CrossRefGoogle Scholar
14.Hennings, D. and Schreinemacher, S., J. Eur. Ceram. Soc. 9, 41 (1992).CrossRefGoogle Scholar
15.Hennings, D. and Mayr, W., J. Solid State Chem. 26, 329 (1978).CrossRefGoogle Scholar
16.Wang, J., Fang, J., Chang, S., Gan, L.M., Chew, Ch. H., Wang, X., and Shen, Z., J. Am. Ceram. Soc. 82, 873 (1991).CrossRefGoogle Scholar
17.Eror, N.G. and Anderson, H.U., in Better Ceramics Through Chemistry II, edited by Brinker, C.J., Clark, D.F., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 571577.Google Scholar
18.Lessing, P.A., Am. Ceram. Soc. Bull. 68, 1002 (1989).Google Scholar
19.Pechini, M.P., U.S. Patent No. 3330697 (11 July 1967).Google Scholar
20.Kumar, S., Messing, G.L., and White, W.B., J. Am. Ceram. Soc. 76, 617 (1993).CrossRefGoogle Scholar
21.Arima, M., Kakihana, M., Yashi, M., and Yoshimura, M., J. Am. Ceram. Soc. 79, 2847 (1996).CrossRefGoogle Scholar
22.Cho, W.S., J. Phys. Chem. Solids 59, 659 (1998).CrossRefGoogle Scholar
23.Tsay, J. and Fang, T., J. Am. Ceram. Soc. 82, 1409 (1999).CrossRefGoogle Scholar
24.Coutures, J.P., Odier, P., and Proust, C., J. Mater. Sci. 27, 1849 (1992).CrossRefGoogle Scholar
25.Gopalakrishnamurthy, H., Subba Rao, M., and Narayanan Kutty, T.R., J. Inorg. Nucl. Chem. 37, 891 (1975).CrossRefGoogle Scholar
26.Cho, S.G., Johnson, P.F., and Condrate, R.A. Jr., J. Mater. Sci. 25, 4738 (1990).CrossRefGoogle Scholar
27.Rajendran, M. and Subbarao, M., J. Solid State Chem. 113, 239 (1994).CrossRefGoogle Scholar
28.Nyquist, R.A. and Kagel, R.O., The Handbook of Infrared and Raman Spectra of Inorganic Compounds, (Academic Press, New York, 1997), pp. 7879.Google Scholar
29.Last, J.T., Phys. Rev. 105, 1740 (1957).CrossRefGoogle Scholar
30.Eror, N.G., Coehr, T.M., and Cornilsen, B.C., Ferroelectrics 28, 321 (1980).CrossRefGoogle Scholar
31.Busca, G., Buscaglia, V., Leoni, M., and Nanni, P., Chem. Mater. 6, 955 (1994).CrossRefGoogle Scholar
32.Capel, F., Ph.D. Thesis, Complutensis University, Madrid, Spain (1998).Google Scholar
33.Wagner, C.D., Davis, L.E., Zeller, M.V., Taylor, J.A., Raymond, R.H., and Gale, L.H., Surf. Interface Anal. 3, 211 (1981).CrossRefGoogle Scholar
34.Sinclair, D.C., Shakle, J.M.S., Morrison, F.D., Smith, R.J., and Beales, T.P., J. Mater. Chem. 9, 1327 (1999).CrossRefGoogle Scholar
35.Chaput, F., Boilot, J.P., and Beauger, A., J. Am. Ceram. Soc. 73, 942 (1990).CrossRefGoogle Scholar