Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T01:00:42.439Z Has data issue: false hasContentIssue false

Bi-based high Tc superconducting fibers by melt extraction

Published online by Cambridge University Press:  31 January 2011

J.J. Chang
Affiliation:
Centre for the Physics of Materials and Department of Physics, McGill University, Rutherford Building, 3600 University Street, Montríal, Quíbec, Canada, H3A 2T8
G. Rudkowska
Affiliation:
Centre for the Physics of Materials and Department of Physics, McGill University, Rutherford Building, 3600 University Street, Montríal, Quíbec, Canada, H3A 2T8
A. Zaluska
Affiliation:
Centre for the Physics of Materials and Department of Physics, McGill University, Rutherford Building, 3600 University Street, Montríal, Quíbec, Canada, H3A 2T8
P. Rudkowski
Affiliation:
Centre for the Physics of Materials and Department of Physics, McGill University, Rutherford Building, 3600 University Street, Montríal, Quíbec, Canada, H3A 2T8
J.O. Ström-Olsen
Affiliation:
Centre for the Physics of Materials and Department of Physics, McGill University, Rutherford Building, 3600 University Street, Montríal, Quíbec, Canada, H3A 2T8
J. Cave
Affiliation:
Institut de Recherche d'Hydro Quíbec (IREQ), 1800 Montíe Ste-Julie, Varennes, Quíbec, Canada, JOL 2PO
Get access

Abstract

Bismuth-based high Tc superconductors have been prepared as fibers by a technique of melt extraction. As-made, the fibers are amorphous with diameters ranging from 0.7 μm to 100 μm and lengths of up to 5 cm. The fibers were subsequently transformed into high Tc superconductors by heat treatment in air. Superconducting transitions at 105 K and 82 K were measured in annealed fibers of initial composition Bi1.8Pb0.2Sr2Ca3Cu4Ox by SQUID magnetometry. The volume fractions of superconducting phases were estimated to have lower bounds of 30% for 2212 and 5% for 2223. The crystallization process has been studied by differential scanning calorimetry, electron microscopy, and x-ray diffraction. Crystallization involves first the formation of the Bi-2201 phase and a bcc phase with lattice parameter a = 0.425 nm before finally significant fractions of both the Bi-2212 and Bi-2223 phases are formed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Miller, T., Sanders, S., Ostenson, J., and Finnemore, D., Appl. Phys. Lett. 56, 548 (1990).Google Scholar
2.Komatsu, T., Hirose, C., Ohki, T., Sato, R., and Matusita, K., Appl. Phys. Lett. 57, 183 (1990).CrossRefGoogle Scholar
3.Zheng, H., Hu, Y., and Mackenzie, J.D., Appl. Phys. Lett. 58, 1679 (1991).Google Scholar
4.Maringer, R. E. and Mobley, C. E., U.S. Patent No. 3 871439 (1975).Google Scholar
5.Rudkowski, P., Rudkowska, G., and Ström-Olsen, J., Mater. Sci. Eng. A133, 158 (1991).Google Scholar
6.Chang, J. J., Bi-based High T c Superconducting Fibers by Melt Extraction, Master's Thesis, McGill University, Montréal, Québec, 1991.Google Scholar
7.Komatsu, T., Imai, K., Sato, R., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L533 (1988).CrossRefGoogle Scholar
8.Bansal, S., Bansal, T. K., Jha, A. K., and Mendiratta, R. G., Physica C173, 260 (1991).Google Scholar
9.LeBeau, S. E., Righi, J., Ostenson, J. E., Sanders, S. C., and Finnemore, D. K., Appl. Phys. Lett. 55, 292 (1989).Google Scholar
10.Minami, T., Akamatsu, Y., Tatsumisago, M., Tohge, N., and Kowada, Y., Jpn. J. Appl. Phys. 27, L777 (1988).Google Scholar
11.Zheng, H., Xu, R., and Mackenzie, J.D., J. Mater. Res. 4, 911 (1989).Google Scholar
12.Nassau, K., Miller, A. E., Gyorgy, E. M., and Siegrist, T., J. Mater. Res. 4, 1330 (1989).CrossRefGoogle Scholar
13.Shi, D., Tang, M., Hash, M., Vandervoort, K., Claus, H., and Lwin, Y., Phys. Rev. B 40, 2247 (1989)CrossRefGoogle Scholar
14.Yoshimura, M., Sung, T. H., Nakagawa, Z. E., and Nakamura, T., J. Mater. Sci. Lett. 8, 687 (1989).Google Scholar
15.Singh, R. and Zacharias, E., J. Phys. D: Appl. Phys. 23, 199 (1990).CrossRefGoogle Scholar
16.Tessier, P., High-rc Bi Oxides by Crystallization of an Amorphous Precursor, Master's Thesis, McGill University, Montreal, Quebec, 1991, unpublished.Google Scholar
17.Shi, D., Tang, M., Vandervoort, K., and Claus, H., Phys. Rev. B 38, 9091 (1989).Google Scholar
18.Asthana, A., Han, P.D., Xu, Z., Chang, L., Payne, D.A., and Gilbert, P.J., Phys. C174, 33 (1991).Google Scholar
19.Xu, Z., Han, P. D., Chang, L., Asthana, A., and Payne, D.A., J. Mater. Res. 5, 39 (1990).CrossRefGoogle Scholar
20.Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L372 (1988).CrossRefGoogle Scholar
21.Uemura, Y. J., Le, L. P., Luke, G. M., Sternlieb, B. J., Brewer, J. H., Kadano, R., Keifl, R. F., Kreitzman, S. R., and Riseman, T. M., Physica C162–164, 857 (1989).Google Scholar
22.Gygax, S., Xing, W., Rajou, D., and Carzon, A., Physica C162–164, 1551 (1989).Google Scholar