Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T04:43:16.041Z Has data issue: false hasContentIssue false

Boron nitride nanotubes/polystyrene composites

Published online by Cambridge University Press:  03 March 2011

Chunyi Zhi*
Affiliation:
Nanoscale Materials Center, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Yoshio Bando
Affiliation:
Nanoscale Materials Center, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Chengchun Tang
Affiliation:
Nanoscale Materials Center, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
Susumu Honda
Affiliation:
Innovation Research Institute, Teijin Ltd., Iwakuni, Yamaguchi 740-8511 Japan
Hiroaki Kuwahara
Affiliation:
Innovation Research Institute, Teijin Ltd., Iwakuni, Yamaguchi 740-8511 Japan
Dmitri Golberg
Affiliation:
Nanoscale Materials Center, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
*
a) Address all correspondence to this author. e-mail: zhi.chunyi@nims.go.jp
Get access

Abstract

Boron nitride nanotube (BNNT)/polystyrene (PS) composite films were fabricated for the first time using high-quality BNNTs synthesized via a chemical-vapor-deposition method. The composite films exhibited good transparency. Tensile tests indicated that the elastic modulus of the films was increased by ∼21% when a ∼1 wt% soluble BNNT fraction was in use. Dispersion of BNNTs in PS and interfacial interactions between them were investigated using transmission electron microscopy. The film thermal properties, such as stability to oxidation and glass transition temperatures were measured. The experimental results and simple theoretical estimates indicate that BNNTs is a promising additive material for polymeric composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Andrews, R., Weisenberger, M.C.: Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8, 31 (2004).CrossRefGoogle Scholar
3.Harris, P.J.F.: Carbon nanotube composites. Int. Mater. Rev. 49, 31 (2004).CrossRefGoogle Scholar
4.Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).CrossRefGoogle ScholarPubMed
5.Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637 (2000).CrossRefGoogle ScholarPubMed
6.Weisenberger, M.C., Grulke, E.A., Jacques, D., Rantell, T., Andrews, R.: Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J. Nanosci. Nanotechnol. 3, 6 (2003).CrossRefGoogle ScholarPubMed
7.Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Lett. Phys. 76, 2868 (2000).CrossRefGoogle Scholar
8.Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D 35 L77(2002).CrossRefGoogle Scholar
9.Dalton, A.B., Collins, S., Munoz, E., Razal, J.M., Ebron, V.H., Ferraris, J.P.: Super-tough carbon-nanotube fibres—These extraordinary composite fibres can be woven into electronic textiles. Nature 423, 703 (2003).CrossRefGoogle Scholar
10.Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L.S.: Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem. Mater. 15, 3198 (2003).CrossRefGoogle Scholar
11.Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842 (1998).CrossRefGoogle Scholar
12.Ajayan, P.M., Schadler, L.S., Giannaris, C., Rubio, A.: Single-walled carbon nanotube-polymer composites: Strength and weakness. Adv. Mater. 12, 750 (2000).3.0.CO;2-6>CrossRefGoogle Scholar
13.Barber, A.H., Cohen, S.R., Wagner, H.D.: Measurement of carbon nanotube-polymer interfacial strength. Appl. Phys. Lett. 82, 4140 (2003).CrossRefGoogle Scholar
14.Wagner, H.D., Lourie, O., Feldman, Y., Tenne, R.: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188 (1998).CrossRefGoogle Scholar
15.Coleman, J., Khan, U., Gunko, Y.: Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 1 2006, and references therein.CrossRefGoogle Scholar
16.Bian, J.F., Lujan, W.R., Harper-Nixon, D., Jeon, H.S., Weinkauf, D.F.: Effect of hexafluoropropylene oxide plasma polymer particle coatings on the rheological properties of boron nitride/poly(dimethylsiloxane) composites. J. Colloid Interface Sci. 290, 582 (2005).CrossRefGoogle Scholar
17.Xu, Y.S., Chung, D.D.L.: Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Comp. Int. 7, 243 (2000).Google Scholar
18.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., Zettl, A.: Boron-nitride nanotubes. Science 269, 966 (1995).CrossRefGoogle ScholarPubMed
19.Hernández, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998).CrossRefGoogle Scholar
20.Suryavanshi, A.P., Yu, M., Wen, J., Tang, C., Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Lett. Phys. 84, 2527 (2004).CrossRefGoogle Scholar
21.Golberg, D., Bando, Y., Kurashima, K., Sato, T.: Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Mater. 44, 1561 (2001).CrossRefGoogle Scholar
22.Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).CrossRefGoogle ScholarPubMed
23.Xiao, Y., Yan, X.H., Cao, J.X., Ding, J.W., Mao, Y.L., Xiang, J.: Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B 69, 205415 (2004).CrossRefGoogle Scholar
24.Blase, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band-gap constancy of boron-nitride nanotubes. Europhys. Lett. 28, 335 (1994).CrossRefGoogle Scholar
25.Bai, X.D., Wang, E.G., Yu, J., Yang, H.: Blue-violet photoluminescence from large-scale highly aligned boron carbonitride nanofibers. Appl. Phys. Lett. 77, 67 (2000).CrossRefGoogle Scholar
26.Yu, J., Ahn, J., Yoon, S.F., Zhang, Q., Gan, R.B., Chew, K., Yu, M.B., Bai, X.D., Wang, E.G.: Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers. Appl. Phys. Lett. 13, 1949 (2000).CrossRefGoogle Scholar
27.Zhi, C.Y., Bando, Y., Tang, C., Xie, R., Sekiguchi, T., Golberg, D.: Perfectly dissolved boron nitride nanotubes due to polymer wrapping. J. Am. Chem. Soc. 127, 15996 (2005).CrossRefGoogle ScholarPubMed
28.Zhi, C.Y., Bando, Y., Tang, C., Honda, S., Sato, K., Kuwahara, H., Golberg, D.: Characteristics of boron nitride nanotube-polyaniline composites. Angew. Chem., Int. Ed. Engl. 44, 7929 (2005).CrossRefGoogle ScholarPubMed
29.Star, A., Stoddart, J.F., Steuerman, D., Diehl, M., Boukai, A., Wong, E.W., Yang, X., Chung, S.W., Choi, H., Heath, J.R.: Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew. Chem., Int. Ed. Engl. 40, 1721 (2001).3.0.CO;2-F>CrossRefGoogle ScholarPubMed
30.Han, W.Q., Bando, Y., Kurashima, K., Sato, T.: Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl. Phys. Lett. 73, 3085 (1998).CrossRefGoogle Scholar
31.Tang, C., Bando, Y., Sato, T., Kurashima, K.: A novel precursor for synthesis of pure boron nitride nanotubes. Chem. Commun. 1290 (2002).CrossRefGoogle ScholarPubMed
32.Zhi, C.Y., Bando, Y., Tang, C., Golberg, D.: Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun. 135, 67 (2005).CrossRefGoogle Scholar
33.Salvetat, J.P., Kulik, A.J., Bonard, J.M., Briggs, G.A.D., Stöckli, T., Méténier, K., Bonnamy, S., Béguin, F., Burnham, N.A., Forró, L.: Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Adv. Mater. 11, 161 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
34.Barber, A.H., Andrews, R., Schadler, L.S., Wagner, H.D.: On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005).CrossRefGoogle Scholar
35.Mallick, P.K.: Fiber-reinforced Composites (Marcel Dekker, New York,1993), p. 130.Google Scholar
36.Watts, P.C.P., Fearon, P.K., Hsu, W.K., Billingham, N.C., Kroto, H.W., Walton, D.R.M.: Carbon nanotubes as polymer antioxidants. J. Mater. Chem. 13, 491 (2003).CrossRefGoogle Scholar
37.Foldes, E., Lohmeijer, J.: Relationship between chemical structure and performance of primary antioxidants in PBD. Polym. Degrad. Stab. 66, 31 (1999).CrossRefGoogle Scholar
38.Mccoy, J.D., Curro, J.G.: Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154 (2002).CrossRefGoogle Scholar
39.Long, D., Lequeux, F.: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).CrossRefGoogle Scholar
40.Keddie, J.L., Jones, R.A., Cory, R.A.: Size-dependent depression of the glass-transition temperature in polymer-films. Europhys. Lett. 27, 59 (1994).CrossRefGoogle Scholar
41.Pham, J.Q., Mitchell, C.A., Bahr, J.L., Tour, J.M., Krishanamootri, R., Green, P.F.: Glass transition of polymer/single-walled carbon nanotube composite films. J. Polym. Sci., Part B 41, 3339 (2003).CrossRefGoogle Scholar