Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T04:38:15.615Z Has data issue: false hasContentIssue false

Bulk- or interface-limited electrical conductions in IrO2/(Ba,Sr)TiO3/IrO2 thin film capacitors

Published online by Cambridge University Press:  31 January 2011

Cheol Seong Hwang
Affiliation:
School of Material Science and Engineering and Inter-university Semiconductor Research Center, Seoul National University, San #56–1 Shillim-dong, Kwanak-ku, Seoul, 151–742, Korea
Get access

Abstract

The electrical conduction behavior of sputter-grown (Ba,Sr)TiO3 thin films having IrO2 electrodes were studied under the assumption of a fully accumulated film having a negative space charge density of 1 × 1019 cm−3 at 25 °C. The negative space charge decreased the actual field strength in the film and resulted in a decreasing leakage current with increasing film thickness at a given applied field. The current conduction in a very low field, roughly less than 150 KV/cm, showed a linear current density–voltage (J–V) behavior at 25 °C. From that field to about 420 KV/cm, the bulk-limited Poole–Frenkel mechanism controlled the overall conduction property at room temperature. Under high field strength, from 420 KV/cm to 1 MV/cm, the interface-limited thermionic field emission mechanism was dominant. The dielectric constant obtained from Poole–Frenkel fitting was approximately 300 ± 50 at 25 °C, which was in qualitative agreement with the value obtained from low-frequency capacitance measurements. The detailed mechanisms of the linear and nonlinear field-dependent emission conductions were discussed with reference to the direction of band bending, not to the carrier concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hwang, C.S., Mater, J.. Sci. Eng. B 56, 178 (1998).CrossRefGoogle Scholar
2.Summerfelt, S.R., in Thin film ferroelectric materials and devices, edited by Ramesh, R., (Kluwer Academic Publishes, Boston, MA, 1997), pp. 142.Google Scholar
3.Zurcher, P., Tracy, C.J., Jones, R.E. Jr, Alluri, P., Chu, P.Y., Jiang, B., Kim, M., Melnick, B.M., Raymond, M.V., Roberts, D., Remmel, T.P., Tsai, T.L., White, B.E., Zafar, S., and Gillespie, S.J., in Ferroelectric Thin Films VII, edited by Jones, R.E., Schwartz, R.W., Summerfelt, S.R., and Yoo, I.K. (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 11.Google Scholar
4.Lee, B.T., Yoo, C.Y., Lim, H.J., Kang, C.S., Park, H.B., Kim, W.D., Joo, S.H., Horii, H., Lee, K.H., Kim, H.W., Lee, S.I., and Lee, M.Y., Proc. Int. Electron Devices Meet. (IEEE, New York, 1998), p. 815.Google Scholar
5.Hieda, K., Eguchi, K., Fukushima, N., Aoyama, T., Natori, K., Kiyotoshi, M., Yamazaki, S., Izuha, M., Niwa, S., Fukuzumi, Y., Ishibashi, Y., Kohyama, Y., Arikado, T., and Okumura, K., Proc. Int. Electron Devices Meet. (IEEE, New York, 1998), p. 807.Google Scholar
6.Tsunemine, Y., Okudaira, T., Kashihara, K., Hanafusa, K., Yutani, A., Fujita, Y., Matsushita, M., Itoh, H., and Miyoshi, H., Proc. Int. Electron Devices Meet., (IEEE, New York, 1998) p. 811.Google Scholar
7.Hwang, C.S., Lee, B.T., Kang, C.S., Lee, K.H., Cho, H.J., Hideki, H., Kim, W.D., Lee, S.I., and Lee, M.Y., J. Appl. Phys. 85, 287 (1999).CrossRefGoogle Scholar
8.Natori, K., Otani, D., and Sano, M., Appl. Phys. Lett. 73, 632 (1998).CrossRefGoogle Scholar
9. Shin, J.C., Park, J., Hwang, C.S., and Kim, H.J., J. Appl. Phys. 86, 506 (1999).CrossRefGoogle Scholar
10. Vendik, O.G., Zubko, S.P., and Ter-Martirosayn, L.T., Appl. Phys. Lett. 73, 37 (1998).CrossRefGoogle Scholar
11. Hwang, C.S., Lee, B.T., Kang, C.S., Kim, J.W., Lee, K.H., Cho, H.J., Hideki, H., Kim, W.D., Lee, S.I., Koh, Y.B., and Lee, M.Y., J. Appl. Phys. 83, 3703 (1998).CrossRefGoogle Scholar
12. Nagaraj, B., Sawhney, T., Perusse, S., Aggawal, S., Ramesh, R., Kaushik, V.S., Zafar, S., Jones, R.E., Lee, J-H., Balu, V., and Lee, J., Appl. Phys. Lett. 74, 3194 (1999).CrossRefGoogle Scholar
13. Hesto, P., in Instabilities in Silicon Devices, edited by Barbottin, G. and Vapaille, A., (North-Holland, Amsterdam, The Netherlands, 1986), p. 280.Google Scholar
14. Cho, H.J., Horii, H., Hwang, C.S., Kim, J.W., Kang, C.S., Lee, B.T., Lee, S.I., Ko, Y.B. and Lee, M.Y., Jpn. J. Appl. Phys. 36, 197 (1997).Google Scholar
15. Rhoderick, E.H. and Williams, R.H., Metal–Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, United Kingdom, 1988), pp. 3538.Google Scholar
16. Simmons, J.G., Phys. Rev. Lett. 15, 967 (1965).CrossRefGoogle Scholar
17. Scott, J.F.,Ferroelectric Memories (Springer, Berlin, Germany, 1999), Chaps. 4 and 5.Google Scholar
18. Dekker, A.J., Phys. Rev. 94, 179 (1954).CrossRefGoogle Scholar
19. Simmons, J.G., J. Phys. Chem. Solids 32, 1987 (1971).CrossRefGoogle Scholar
20. Mihara, T., Nikkei Electronics 581, 94 (1993).Google Scholar
21. For example, Wang, S.,Solid State Electronics (McGraw-Hill, New York, 1966), p. 317.Google Scholar
22. Hesto, P., in Instabilities in Silicon Devices, edited by Barbottin, G. and Vapaille, A., (North-Holland, Amsterdam, The Netherlands, 1986), p. 304.Google Scholar
23. Dietz, G.W., Schumacher, M., Waser, R., Streiffer, S.K., Basceri, C., and Kingon, A.I., J. Appl. Phys. 82, 2359 (1997).CrossRefGoogle Scholar
24. Baniecki, J.D., Laibowitz, R.B., Shaw, T.M., Lian, J., Xu, H., and Ma, Q.Y., J. Appl. Phys., 89 2873 (2001).CrossRefGoogle Scholar
25. Scott, J.F., Ferroelectric Memories (Springer, Berlin, Germany, 1999), pp. 7475.Google Scholar